
IBM Parallel Environment for AIX 5L

Introduction

Version 4 Release 3.0

SA22-7947-05

���

IBM Parallel Environment for AIX 5L

Introduction

Version 4 Release 3.0

SA22-7947-05

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 105.

Sixth Edition (October 2006)

This edition applies to version 4, release 3, modification 0 of IBM Parallel Environment for AIX 5L (product number

5765-F83) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition

replaces SA22-7947-04. Significant changes or additions to the text and illustrations are indicated by a vertical line (|)

to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries): Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

 Title and order number of this book

 Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

Contents

Figures . v

Tables . vii

About this book . ix

Who should read this book . ix

How this book is organized . ix

Overview of contents . ix

Conventions and terminology used in this book x

Abbreviated names . x

Prerequisite and related information xi

Using LookAt to look up message explanations xii

How to send your comments . xii

National language support (NLS) xii

Summary of changes for Parallel Environment 4.3 xiii

Chapter 1. Understanding the environment 1

What is IBM Parallel Environment for AIX? 1

What is the Parallel Operating Environment? 1

Before you start . 2

Running POE . 3

Chapter 2. Message passing 21

The message passing model . 21

Data decomposition . 22

Functional decomposition . 29

Duplication versus redundancy 31

Protocols supported . 32

Thread debugging implications 34

Checkpointing and restarting a parallel program 34

Chapter 3. Diagnosing and correcting common problems 35

Messages . 35

Message catalog errors . 35

Finding PE messages . 35

Logging POE errors to a file 36

Message format . 36

Diagnosing problems using IVP 36

Cannot compile a parallel program 36

Cannot start a parallel job . 37

Cannot execute a parallel program 38

The program runs but... 41

Using the parallel debugger 41

When a core dump is created 42

No output at all . 49

The program hangs . 49

Attach the debugger . 52

Why did the program hang? 57

Other reasons for the program to hang 58

Bad output . 58

Debugging and threads . 59

Chapter 4. Is the program efficient? 61

© Copyright IBM Corp. 1993, 2006 iii

||
||
||
||
||
||
||
||
||
||
||

||

||

||

Tuning the performance of a parallel application 61

How much communication is enough? 62

Tuning the performance of threaded programs 66

Why is this so slow? . 67

Profile it . 67

Parallelize it . 77

Wrong answer! . 78

Here’s the fix! . 81

It’s still not fast enough! . 82

Tuning summary . 92

Chapter 5. Creating a safe program 93

What is a safe program? . 93

Safety and threaded programs 93

Using threaded programs with non-threadsafe libraries 94

Message ordering . 94

Program progress when two processes initiate two matching sends and receives 95

Communication fairness . 95

Resource limitations . 95

Appendix A. A sample program to illustrate messages 97

Figuring out what all of this means 99

Appendix B. Parallel Environment internals 101

What happens when I compile my applications? 101

How do my applications start? 101

How does POE talk to the nodes? 101

How are signals handled? . 102

What happens when my application ends? 102

Appendix C. Accessibility features for PE 103

Accessibility features . 103

Keyboard navigation . 103

IBM and accessibility . 103

Notices . 105

Trademarks . 107

Acknowledgements . 107

Glossary . 109

Index . 117

iv IBM PE for AIX 5L V4 R3.0: Introduction

||

Figures

 1. Overview window . 69

 2. Load application window . 71

 3. Probe data selection window . 72

 4. Source tree window . 73

 5. Process list, source tree, and probe selection window 74

 6. Data view area . 75

 7. Data view area (fewer cache misses showing) . 76

 8. Serial and parallel array stencils . 79

 9. How the average is computed in a 4-point stencil 80

10. Sequence of array calculation . 81

11. Jumpshot - skewed program . 86

12. Jumpshot legend - skewed program . 87

13. Jumpshot - pipelined program showing improved load balance 89

14. Jumpshot - pipielined program communication sequence 90

15. Jumpshot legend – pipelined program . 91

© Copyright IBM Corp. 1993, 2006 v

vi IBM PE for AIX 5L V4 R3.0: Introduction

Tables

1. Typographic conventions . x

2. Results of program 'naive' . 67

3. Comparison of programs 'naive' and 'reordered' 77

4. Comparison of programs 'naive', 'reordered', and 'chaotic' 78

5. Comparison of programs 'naive', 'reordered', 'chaotic', and 'skewed' 82

6. Comparison of programs 'naive', 'reordered', 'chaotic', 'skewed', and 'pipelined' 88

© Copyright IBM Corp. 1993, 2006 vii

||

viii IBM PE for AIX 5L V4 R3.0: Introduction

About this book

This book provides suggestions and guidance for using the IBM® Parallel

Environment for AIX 5L™ (5765-F83) to develop and run Fortran, C, and C++

parallel applications. To make this book a little easier to read, the name IBM

Parallel Environment has been abbreviated to PE throughout.

In this book, you will find information on basic parallel programming concepts and

the Message Passing Interface (MPI) standard. You will also find information about

the application development tools that are provided by PE such as the Parallel

Operating Environment and the Parallel Debugger.

This book contains examples and illustrates various commands and programs as

well as the output you receive as a result of running them. When looking at these

examples, keep in mind that the output you see on the system may not exactly

match what is printed in the book. The included examples give you a basic idea of

what happens.

This book assumes that AIX 5L Version 5.3 Technology Level 5300-05 or higher,

and the X-Windows system are already installed, if required.

Who should read this book

This book is intended for application developers who are interested in creating and

running parallel programs. To make the best use of this book, you should be

familiar with the following:

v The AIX® operating system

v One or more of the supported programming languages (Fortran, C, or C++)

v Basic parallel programming concepts.

This book is not intended to provide comprehensive coverage of the topics, nor is it

intended to tell you everything there is to know about IBM Parallel Environment

(PE). If you are new to either message passing parallel programming or to PE, you

should find this book useful. For the latest information, always use the documents

at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

The purpose of this book is to get you started creating parallel programs with PE.

Once you have mastered these initial concepts, you will need to know more about

how PE works. For information on the Parallel Operating Environment (POE), see

IBM Parallel Environment: Operation and Use, Volume 1. For information on PE

tools, see IBM Parallel Environment for AIX: Operation and Use, Volume 2.

How this book is organized

Overview of contents

This book contains the following information:

v Chapter 1, “Understanding the environment,” on page 1 familiarizes you with

the Parallel Operating Environment (POE).

v Chapter 2, “Message passing,” on page 21 covers parallelization techniques

and discusses their advantages and disadvantages. It discusses how you take a

working serial program and create a parallel program that gives the same result.

© Copyright IBM Corp. 1993, 2006 ix

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|
|

|
|
|

v Chapter 3, “Diagnosing and correcting common problems,” on page 35

outlines the possible causes for a parallel application to fail to execute correctly,

and how the tools available with PE can be used to identify and correct

problems.

v Chapter 4, “Is the program efficient?,” on page 61 discusses some of the

ways you can optimize the performance of a parallel program and some hints on

tuning the performance of the program.

v Chapter 5, “Creating a safe program,” on page 93 provides you with some

general guidelines for creating safe parallel MPI programs.

v Appendix A, “A sample program to illustrate messages,” on page 97

provides a sample program, run with the maximum level of error messages. It

points out the various types of messages you can expect, and tells you what they

mean.

v Appendix B, “Parallel Environment internals,” on page 101 provides some

additional information about how the PE works with respect to your application.

Conventions and terminology used in this book

Note that in this document, LoadLeveler®® is also referred to as Tivoli® Workload

Scheduler LoadLeveler and TWS LoadLeveler.

This book uses the following typographic conventions:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names,

path names, PE component names (poe, for example), and

subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

\ The continuation character is used in coding examples in this book

for formatting purposes.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

x IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|

||

||

||
|
|
|

||
|

||
|

|
|

||

||

||
|
|

|
|

|
|

|
|

|

|

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

NetCDF Network Common Data Format

PCT Performance Collection Tool

PE IBM® Parallel Environment for AIX®

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries® IBM eServer™ pSeries

PVT Profile Visualization Tool

RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

STDERR standard error

STDIN standard input

STDOUT standard output

UTE Unified Trace Environment

System x IBM System x

Prerequisite and related information

The Parallel Environment for AIX library consists of:

v IBM Parallel Environment: Introduction, SA22-7947

v IBM Parallel Environment: Installation, GA22-7943

v IBM Parallel Environment: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment: Operation and Use, Volume 2, SA22-7949

v IBM Parallel Environment: MPI Programming Guide, SA22-7945

v IBM Parallel Environment: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment: Messages, GA22-7944

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM eServer Cluster Information Center on the Web at:

About this book xi

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|

|

|

|

|

|

|

|

|

|
|

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the book’s

publication number. The publication number for each of the Parallel Environment

books is listed after the book title in the preceding list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux® handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality

information. If you have comments about this book or other PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of

the message catalogs are shipped with the PE licensed program, but your site may

be using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog. NLSPATH

specifies a list of directories to search for message catalogs. The directories are

searched, in the order listed, to locate the message catalog. In resolving the path to

the message catalog, NLSPATH is affected by the values of the environment

variables LC_MESSAGES and LANG. If you get an error saying that a message

catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

xii IBM PE for AIX 5L V4 R3.0: Introduction

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

||

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming

Concepts: Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.3

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v PE 4.3 supports only AIX 5L Version 5.3 Technology Level 5300-05, or later

versions.

AIX 5L Version 5.3 Technology Level 5300-05 is referred to as AIX 5L V5.3 TL

5300-05 or AIX 5.3.

v Support for Parallel Systems Support Programs for AIX (PSSP), the SP™

Switch2, POWER3™ servers, DCE, and DFS™ has been removed. PE 4.2 is the

last release that supported these products.

v PE Benchmarker support for IBM System p5™ model 575 has been added.

v A new environment variable, MP_TLP_REQUIRED is available to detect the

situation where a parallel job that should be using large memory pages is

attempting to run with small pages.

v A new command, rset_query, for verifying that memory affinity assignments

have been performed.

v Performance of MPI one-sided communication has been substantially improved.

v Performance improvements to some MPI collective communication subroutines.

v The default value for the MP_BUFFER_MEM environment variable, which

specifies the size of the Early Arrival (EA) buffer, is now 64 MB for both IP and

User Space. In some cases, 32 bit IP applications may need to be recompiled

with more heap or run with MP_BUFFER_MEM of less than 64 MB. For more

details, see the migration information in Chapter 1 of IBM Parallel Environment:

Operation and Use, Volume 1 and Appendix E of IBM Parallel Environment: MPI

Programming Guide.

About this book xiii

|
|

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

xiv IBM PE for AIX 5L V4 R3.0: Introduction

Chapter 1. Understanding the environment

To understand the new environment, IBM Parallel Environment for AIX (PE), you

must understand these concepts:

v PE

v The Parallel Operating Environment (POE)

v Starting the POE

v Running simple commands

v Experimenting with parameters and environment variables

v Using a host list file versus a job management system (LoadLeveler) for

requesting processor nodes

v Compiling and running a simple parallel application

v Some simple environment setup and debugging tips.

What is IBM Parallel Environment for AIX?

IBM Parallel Environment for AIX (PE) software lets you develop, debug, analyze,

tune, and execute parallel applications written in Fortran, C, and C++. PE conforms

to the MPI standard, except that PE does not include the functions defined by the

chapter 'Process Creation and Management' of MPI-2 . PE commands and

interfaces follow the POSIX model.

PE consists of the following:

v The Parallel Operating Environment (POE), for submitting and managing jobs.

v A message passing library (MPI), for communication among the tasks that make

up a parallel program.

v A parallel debugger (pdbx for AIX, PDB for Linux) for debugging parallel

programs.

v Parallel utilities for easing file manipulation.

v PE Benchmarker, a suite of applications and utilities you can use to analyze

program performance.

What is the Parallel Operating Environment?

The Parallel Operating Environment (POE) allows you to develop and execute the

parallel applications across multiple operating system images, called nodes. When

using POE, there is a single node (possibly a workstation) that is called the home

node that manages interactions with users.

POE transparently manages the allocation of remote nodes where the parallel

application actually runs. It also handles the various requests and communication

between the home node and the remote nodes via the underlying network.

This approach eases the transition from serial to parallel programming by hiding the

differences, and allowing you to continue using standard AIX tools and techniques.

You have to tell POE what remote nodes to use, but once you have, POE does the

rest.

The processor node is a physical entity or operating system image that is defined to

the network. It can be a standalone machine, or a processor node within a frame or

clustered server, or an SMP node. From POE’s point of view, a node is a single

copy of the operating system.

© Copyright IBM Corp. 1993, 2006 1

|
|

|

|

|

|

|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|

Before you start

Before starting, check that you have addressed the following items:

Installation

The person who installed POE should have verified that it was installed successfully

by running the Installation Verification Program (IVP). The IVP is discussed in IBM

Parallel Environment: Installation.

The IVP tests to see if POE can do the following:

v Establish a remote execution environment

v Compile and execute the program

v Initialize the IP message passing environment

v Check that the MPI library is operable.

Access

Before running the job, you must first have access to computer resources in the

system. Here are some things to consider:

v You must have the same user ID and group ID on the home node and each

remote node on which you will be running the parallel application.

v POE will not allow you to run the application as root.

If you are using LoadLeveler to submit POE jobs, which includes all user space

applications, then LoadLeveler is responsible for the security authentication. The

security function in POE is not invoked when POE is run under LoadLeveler.

Security methods: PE uses an enhanced set of security methods, based on

Cluster Security Services in RSCT (Reliable Scalable Cluster Technology). RSCT is

a set of software components that provide a comprehensive clustering environment.

RSCT is the infrastructure used by a variety of products to provide clusters with

improved system availability, scalability, and ease of use. POE now has a security

configuration option for the system administrator to determine which set of security

methods are used in the system. Two types of security methods are supported:

v cluster security services

v AIX based security (or Compatibility, which is the default)

For more information about these security methods, and how to configure them, see

the IBM Parallel Environment: Installation.

Cluster security services: When cluster based security is the security method of

choice, the system administrator will have to ensure that UNIX® Host Based

authentication is enabled and properly configured on all nodes. Refer to IBM

Parallel Environment: Installation and IBM Reliable Scalable Cluster Technology:

Guide and Reference for details.

When using cluster based security, users will be required to have the proper entries

in the /etc/hosts.equiv or .rhosts files, to ensure proper access to each node, as

described in “User authorization.”

AIX based security: When AIX based security (compatibility) is the security method

of choice (which is also the default), POE will rely on the authority as defined in

“User authorization.”

User authorization

You must have remote execution authority on all the nodes in the system that you

will use for parallel execution. The system administrator should:

2 IBM PE for AIX 5L V4 R3.0: Introduction

|

|
|
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|

|
|
|

v Authorize both the home node machine and the user name (or machine names)

in the /etc/hosts.equiv file on each remote node, or

v Set up the .rhosts file in the home directory of the user ID for each node that

you want to use. The contents of each .rhosts file can be either the explicit IP

address of the home node, or the home node name. For more information about

.rhosts files, see the IBM Parallel Environment: Installation.

/etc/hosts.equiv is checked first, and, if the home node and user/machine name do

not appear there, it then looks to .rhosts.

You can verify that you have remote execution authority by running a remote shell

from the workstation where you intend to submit parallel jobs. For example, to test

whether you have remote execution authority on node 202r1n10, try the following

command:

$ rsh 202r1n10 hostname

The response should be the remote host name. If it is not the remote host name, or

the command cannot run, see the system administrator. Issue this command for

every remote host on which you plan to have POE execute the job.

POE does not use rsh, but does use the same user authentication mechanism. If

rsh is not installed on your workstation, then you will not be able to run this test.

Refer to IBM Parallel Environment: Installation for more information on enabling

rsh.

Host list file

One way to tell POE where to run the program is by using a host list file. The host

list file is generally in the current working directory, but you can move it anywhere

you like by specifying certain parameters. This file can be given any name, but the

default name is host.list. Many people use host.list as the name to avoid having to

specify another parameter. This file contains one of two different kinds of

information; node names or pool numbers (a pool can also be designated by a

string).

Node names refer to the hosts on which parallel jobs may be run. They may be

specified as Domain Names (as long as those Domain Names can be resolved

from the workstation where you submit the job) or as Internet addresses. Each host

goes on a separate line in the host list file.

Here is an example of a host list file that specifies the node names on which four

tasks will run:

202r1n09.hpssl.kgn.ibm.com

202r1n10.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

Running POE

After you have checked all the items in “Before you start” on page 2, you are ready

to run the POE. You can view POE as a way to run commands and programs on

multiple nodes from a single point. Remember that these commands and programs

are really running on the remote nodes. If you ask POE to perform some operation

on a remote node, everything necessary to perform that operation must be available

on the remote node.

Chapter 1. Understanding the environment 3

|
|

There are two ways to influence the way the parallel program is executed; with

environment variables or command line option flags. You can set environment

variables at the beginning of the session to influence each program that you

execute. You also get the same effect by specifying the related command line flag

when you invoke POE, but its influence lasts only for that particular program

execution. “Running POE with environment variables” on page 6 gives you some

high-level information, but you may also want to refer to IBM Parallel Environment:

Operation and Use, Volume 1 to learn more about using environment variables.

Some examples of running POE

The poe command enables you to load and execute programs on remote nodes.

The syntax is:

poe [program] [options]

When you invoke poe, it allocates processor nodes for each task and initializes the

local environment. It then loads the program and reproduces the local shell

environment on each processor node. POE also passes the user program

arguments to each remote node.

The simplest thing to do with POE is to run a command. When you try these

examples on the system, use a host list file that contains the node names (as

opposed to a pool number). These examples assume at least a four-node parallel

environment. If you have more than four nodes, feel free to use more. If you have

fewer than four nodes, you may duplicate lines. This example assumes that the file

is called host.list, and is in the directory from which you are submitting the parallel

job. If either of these conditions are not true, POE will not find the host list file

unless you use the -hostfile option.

The -procs 4 option tells POE to run this command on four nodes. It will use the

first four in the host list file.

$ poe hostname -procs 4

202r1n10.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n09.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

What you see is the output from the hostname command run on each of the

remote nodes. POE has taken care of submitting the command to each node,

collecting the standard output and standard error from each remote node, and

sending it back to the workstation. One thing that you do not see is an indication of

which task is responsible for each line of output. In a simple example like this, it is

not that important. If, however, you had many lines of output from each node, you

would want to know which task was responsible for each line of output. To do that,

you use the -labelio option:

$ poe hostname -procs 4 -labelio yes

1:202r1n10.hpssl.kgn.ibm.com

2:202r1n11.hpssl.kgn.ibm.com

0:202r1n09.hpssl.kgn.ibm.com

3:202r1n12.hpssl.kgn.ibm.com

Notice how each line starts with a number and a colon and that the numbering

started at 0 (zero). The number is the task ID that the line of output came from (it is

also the line number in the host list file that identifies the host which generated this

output). Use this parameter to identify lines from a command that generates more

output. Try this command:

4 IBM PE for AIX 5L V4 R3.0: Introduction

$ poe cat /etc/motd -procs 2 -labelio yes

You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.3 on 202r1n09.hpssl.kgn.ibm.com *

0:* *

0:***

0:* *

0:* Message of the Day: Never drink more than 3 *

0:* Blasters unless you are a 50 ton elephant. *

0:* *

0:* *

1:***

1:* *

1:* Welcome to IBM AIX Version 5.3 on 202r1n10.hpssl.kgn.ibm.com *

1:* *

1:***

1:* *

1:* *

1:* Message of the Day: Never drink more than 3 *

1:* Blasters unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

0:* *

0:* *

0:* *

0:***

The cat command is listing the contents of the file /etc/motd on each of the remote

nodes. Notice how the output from each of the remote nodes is intermingled. This is

because as soon as a buffer is full on the remote node, POE sends it back to the

workstation for display (in case you had any doubts that these commands were

really being executed in parallel). The result is the jumbled mess that can be difficult

to interpret. Fortunately, POE can clear things up with the -stdoutmode parameter.

Try this command:

$ poe cat /etc/motd -procs 2 -labelio yes -stdoutmode ordered

You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.3 on 202r1n09.hpssl.kgn.ibm.com *

0:* *

0:***

0:* *

0:* *

0:* Message of the Day: Never drink more than 3 Blasters *

0:* unless you are a 50 ton elephant. *

0:* *

0:* *

0:* *

0:***

1:***

1:* *

1:* Welcome to IBM AIX Version 5.3 on 202r1n10.hpssl.kgn.ibm.com *

1:* *

1:***

1:* *

1:* *

1:* Message of the Day: Never drink more than 3 Blasters *

Chapter 1. Understanding the environment 5

1:* unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

POE holds all the output until the jobs either finish or POE itself runs out of space.

If the jobs finish, POE displays the output from each remote node together. If POE

runs out of space, it prints everything, and then starts a new page of output. You

get less of a sense of the parallel nature of the program, but it is easier to

understand.

Running POE with environment variables

If you are getting tired of typing the same command line options over and over

again, you can set them as environment variables so that you do not have to put

them on the command line. The environment variable names are the same as the

command line option names (without the leading dash), but they start with MP_, all

in upper case. For example, the environment variable name for the -procs option is

MP_PROCS, and for the -labelio option it is MP_LABELIO. Setting these two

variables like this:

$ export MP_PROCS=2

$ export MP_LABELIO=yes

allows you to run the /etc/motd program with two processes and labeled output,

without specifying either with the poe command.

Try this command:

$ poe cat /etc/motd -stdoutmode ordered

You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.3 on pe03.pok.ibm.com *

0:* *

0:***

0:* *

0:* *

0:* Message of the Day: Never drink more than 3 Blastes *

0:* unless you are a 50 ton elephant. *

0:* *

0:* *

0:* *

0:***

1:***

1:* *

1:* Welcome to IBM AIX Version 5.3 on pe03.pok.ibm.com *

1:* *

1:***

1:* *

1:* *

1:* Message of the Day: Never drink more than 3 *

1:* Blasters unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

In the previous example, the program ran with two processes, and the output was

labeled.

6 IBM PE for AIX 5L V4 R3.0: Introduction

Now, to see that the environment variable setting lasts for the duration of the

session, try running the command below, without specifying the number of

processes or labeled I/O.

$ poe hostname

0:202r1n09.hpssl.kgn.ibm.com

1:202r1n10.hpssl.kgn.ibm.com

Notice that the program still ran with two processes and you got labeled output.

Now try overriding the environment variables just set. To do this, use command line

options when running POE. Try running the following command:

$ poe hostname -procs 4 -labelio no

202r1n09.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n10.hpssl.kgn.ibm.com

This time, notice that the program ran with four processes and that the output was

not labeled. No matter what the environment variables have been set to, you can

always override them when you run POE.

To show that this was a temporary override of the environment variable settings, try

running the following command again, without specifying any command line options.

$ poe hostname

0:202r1n09.hpssl.kgn.ibm.com

1:202r1n10.hpssl.kgn.ibm.com

Once again, the program ran with two processes, and the output was labeled.

Compiling

You probably have programs that you want to run in parallel. Chapter 2, “Message

passing,” on page 21 talks about creating parallel programs in a more detail. Right

now the topic is compiling a program for POE. You can compile almost any Fortran,

C, or C++ program for execution under POE.

Before compiling, you should verify that the following has happened:

v POE is installed on the system

v You are authorized to use POE

v A Fortran, C Compiler, or C ++ compiler is installed on the system.

See IBM Parallel Environment: MPI Programming Guide for information on

compilation restrictions for POE.

This example, showing how compiling works, uses the Hello World program. Here it

is in C:

/**

*

* Hello World C Example

*

* To compile:

* mpcc_r -o hello_world_c hello_world.c

*

**/

#include<stdlib.h>

#include<stdio.h>

Chapter 1. Understanding the environment 7

/* Basic program to demonstrate compilation and execution techniques */

int main()

{

printf("Hello, World!\n");

exit(0);

}

And here it is in Fortran:

c***

c*

c* Hello World Fortran Example

c*

c* To compile:

c* mpxlf_r -o hello_world_f hello_world.f

c*

c***

c --

c Basic program to demonstrate compilation and execution techniques

c --

c program hello

implicit none

write(6,*)’Hello, World!’

stop

end

To compile these programs, you just invoke the appropriate compiler script:

$ mpcc_r -o hello_world_c hello_world.c

$ mpxlf_r -o hello_world_f hello_world.f

** main === End of Compilation 1 ===

1501-510 Compilation successful for file hello_world.f.

POE scripts mpcc_r, mpCC_r, and mpxlf_r link the parallel libraries that allow

programs to run in parallel. Script mpcc_r generates thread-aware code by linking

in the threaded version of MPI, including the threaded POE utility library. Currently,

only the threaded version of MPI is provided by POE.

Legacy POE scripts mpcc, mpCC, and mpxlf are now symbolic links to mpcc_r,

mpCC_r, and mpxlf_r, and are used in some of the examples.

All the compiler scripts accept all the same options that the non-parallel compilers

do, as well as some options specific to POE. For a complete list of all

parallel-specific compilation options, see IBM Parallel Environment: Operation and

Use, Volume 1.

Running one of the POE compiler scripts creates an executable version of the

source program that takes advantage of POE. However, before POE can run the

program, you need to make sure that it is accessible on each remote node. You can

do this by either copying it there, or by mounting the file system that the program

resides in to each remote node.

Here is the output of the C program (threaded or non-threaded):

$ poe hello_world_c -procs 4

Hello, World!

Hello, World!

Hello, World!

Hello, World!

8 IBM PE for AIX 5L V4 R3.0: Introduction

And here is the output of the Fortran program:

$ poe hello_world_f -procs 4

Hello, World!

Hello, World!

Hello, World!

Hello, World!

POE options

There are a number of options (command line flags) that you may want to specify

when invoking POE. These options are covered in full detail in IBM Parallel

Environment: Operation and Use, Volume 1 but here are the ones you will most

likely need to be familiar with at this stage.

-procs: When you set -procs, you are telling POE how many tasks the program

will run. You can also set the MP_PROCS environment variable to do this (-procs

can be used to temporarily override it).

-hostfile or -hfile: The default host list file used by POE to allocate nodes is

called host.list. You can specify a file other than host.list by setting the -hostfile or

-hfile options when invoking POE. You can also set the MP_HOSTFILE

environment variable to do this (-hostfile and -hfile can be used to temporarily

override it).

-labelio: You can set the -labelio option when invoking POE so that the output

from the parallel tasks of the program are labeled by task id. This becomes

especially useful when you are running a parallel program and the output is

unordered. When you have output that is labeled output, you can easily determine

which message the task returned.

You can also set the MP_LABELIO environment variable to do this (-labelio can be

used to temporarily override it).

-infolevel or -ilevel: You can use the -infolevel or -ilevel options to specify the

level of messages you want from POE. There are different levels of informational,

warning, and error messages, plus several debugging levels. The -infolevel option

generates large amounts of output. Use it with care. You can also set the

MP_INFOLEVEL environment variable to do this (-infolevel and -ilevel can be

used to temporarily override it).

-pmdlog: The -pmdlog option lets you specify that diagnostic messages should

be logged to a file on each of the remote nodes of the partition. These diagnostic

logs are particularly useful for isolating the cause of abnormal termination. The

-pmdlog option consumes a significant amount of system resources. Use it with

care. You can also set the MP_PMDLOG environment variable to do this, and

-pmdlog can be used to temporarily override the MP_PMDLOG environment

variable.

The PMD log file is located in /tmp and is named: mplog.jobid.taskid.

-stdoutmode: The -stdoutmode option lets you specify how you want the output

data from each task in the program to be displayed. When you set this option to

ordered, the output data from each parallel task is written to its own buffer, and

later, all buffers are flushed, in task order, to STDOUT. The examples here show

you how this works. Using the -infolevel option consumes a significant amount of

Chapter 1. Understanding the environment 9

|

|
|
|
|
|
|
|

|

system resources, which may affect performance. You can also set the

MP_STDOUTMODE environment variable to do this (-stdoutmode can be used to

temporarily override it).

Managing jobs

So far, you have explicitly specified to POE the set of nodes on which to run the

parallel application. You did this by creating a list of hosts in a file called host.list, in

the directory from which you submitted the parallel job. In the absence of any other

instructions, POE selected host names out of this file until it had as many as the

number of processes you told POE to use (with the -procs option).

Another way to tell POE which hosts to use is with LoadLeveler. LoadLeveler can

manage jobs on a networked cluster of pSeries servers.

LoadLeveler is a job management system that allows users to run more jobs in less

time by matching the jobs’ processing needs with the available resources.

LoadLeveler allocates nodes, one job at a time. This is necessary if a parallel

application is communicating directly over the high performance switch. With the

-euilib command line option (or the MP_EUILIB environment variable), you can

specify how you want to do message passing. This option lets you specify the

message passing subsystem library implementation, IP or User Space (US), that

you wish to use. See IBM Parallel Environment: Operation and Use, Volume 1 for

more information. With LoadLeveler, you can also dedicate the parallel nodes to a

single job, so there is no conflict or contention for resources. LoadLeveler allocates

nodes from either the host list file, or from a predefined pool, which the system

administrator usually sets up.

How the nodes are allocated: To know who is allocating the nodes and where

they are being allocated from, you must always have a host list file or use the

MP_RMPOOL environment variable or -rmpool command line option (unless you

are using the MP_LLFILE environment variable or the -llfile command line option).

See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for more

information.

The default for the host list file is a file named host.list in the directory from which

the job is submitted. This default may be overridden by the -hostfile command line

option or the MP_HOSTFILE environment variable. For example, the following

command:

$ poe hostname -procs 4 -hostfile $HOME/myHosts

uses a file called myHosts, located in the home directory. If the value of the

-hostfile parameter does not start with a slash (/), it is taken as relative to the

current directory. If the value starts with a slash (/), it is taken as a fully-qualified file

name.

For specific examples of how a system administrator defines pools, see Tivoli®

Workload Scheduler LoadLeveler: Using and Administering. There is another way to

designate the pool on which you want the program to run. If myHosts did not

contain any pool numbers, you could use the:

v MP_RMPOOL environment variable which you can set to a number or string.

This setting would last for the duration of the session.

v -rmpool command line option to specify a number or string when you invoke the

program. This option would override the MP_RMPOOL environment variable.

10 IBM PE for AIX 5L V4 R3.0: Introduction

|
|

If a host list file named host.list exists, or if a host list file is specified using

MP_HOSTFILE or -hostfile, anything you specify with MP_RMPOOL or -rmpool

will be ignored. If a file named host.list exists and you want to use MP_RMPOOL or

-rmpool then MP_HOSTFILE or -hostfile must be set to NULL.

For more information about the MP_RMPOOL environment variable or the -rmpool

command line option, see IBM Parallel Environment: Operation and Use, Volume 1.

If the myHosts file contains actual host names, but you want to use the switch

directly for communication, LoadLeveler allocates only the nodes that are listed in

myHosts. LoadLeveler keeps track of which parallel jobs are using the switch.

Since it allows more than one job at a time to use the switch, LoadLeveler makes

sure that only the allowed number of tasks actually use it. If the host list file

contains actual host names, but you do not want to use the switch directly for

communication, POE allocates the nodes from those listed in the host list file.

You cannot have both host names and pool IDs in the same host list file.

The program executes exactly the same way, regardless of whether POE or

LoadLeveler allocated the nodes. In the following example, the host list file contains

a pool number which causes the job management system to allocate nodes.

However, the output is identical to the output in “Compiling” on page 7, where POE

allocated the nodes from the host list file.

$ poe hello_world_c -procs 4 -hostfile pool.list

Hello, World!

Hello, World!

Hello, World!

Hello, World!

So, if the output looks the same, regardless of how the nodes are allocated, how do

you know whether LoadLeveler was used? Well, POE knows a lot that it ordinarily

does not tell you. If you coax it with the -infolevel option, POE will tell you more

information than you ever wanted to know.

Getting a little more information

You can control the level of messages you get from POE as the program executes

by using the -infolevel option of POE. The default setting is 1 (normal), which says

that warning and error messages from POE will be written to STDERR. However,

you can use this option to get more information about how the program executes.

For example, with -infolevel set to 2, you see a couple of different things. First, you

will see a message that says that POE has contacted LoadLeveler. Following that,

you will see messages that indicate which nodes LoadLeveler passed back to POE

for use.

For a description of the various -infolevel settings, see IBM Parallel Environment:

Operation and Use, Volume 1.

Here is the hello world program again:

$poe hello_world_c -resd yes -procs 2 -labelio yes -infolevel 2

You should see output similar to the following:

INFO: 0031-364 Contacting LoadLeveler to set and query information for

 interactive job

INFO: 0031-380 LoadLeveler step ID is k133rp03.kgn.ibm.com.1154.0

INFO: 0031-118 Host k133rp03.kgn.ibm.com requested for task 0

INFO: 0031-118 Host k133rp03.kgn.ibm.com requested for task 1

Chapter 1. Understanding the environment 11

|
|
|
|
|
|
|

|
|
|
|
|

INFO: 0031-119 Host k133rp03.kgn.ibm.com allocated for task 0

INFO: 0031-120 Host address 89.116.113.22 allocated for task 0

INFO: 0031-377 Using en0 for mpi euidevice for task 0

INFO: 0031-119 Host k133rp03.kgn.ibm.com allocated for task 1

INFO: 0031-120 Host address 89.116.113.22 allocated for task 1

INFO: 0031-377 Using en0 for mpi euidevice for task 1

 0:INFO: 0031-724 Executing program: <hello_world_c>

 1:INFO: 0031-724 Executing program: <hello_world_c>

 0:Hello, world!

 0:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 1:Hello, world!

 1:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

INFO: 0031-656 I/O file STDOUT closed by task 0

INFO: 0031-656 I/O file STDERR closed by task 0

INFO: 0031-656 I/O file STDOUT closed by task 1

INFO: 0031-656 I/O file STDERR closed by task 1

INFO: 0031-251 task 0 exited: rc=0

INFO: 0031-251 task 1 exited: rc=0

INFO: 0031-639 Exit status from pm_respond = 0

With -infolevel set to 2, you also see messages from each node that indicate the

executable they are running and what the return code from the executable is. In the

example above, you can differentiate between the -infolevel messages that come

from POE itself and the messages that come from the remote nodes, because the

remote nodes are prefixed with their task ID. If you did not set -infolevel, you would

see only the output of the executable (Hello world!, in the previous example),

interspersed with POE output from remote nodes.

With -infolevel set to 3, you get more information. In the following example, use the

host list file that contains host names again (as opposed to a Pool ID), when you

invoke POE.

Look at the following output. In this case, POE tells you that it is opening the host

list file, the nodes it found in the file (along with their Internet addresses), the

parameters to the executable being run, and the values of some of the POE

parameters.

$poe hello_world_c -resd yes -procs 2 -labelio yes -ilevel 3

You should see output similar to the following:

INFO: DEBUG_LEVEL changed from 0 to 1

D1<L1>: Open of file ./host.list successful

D1<L1>: mp_euilib = ip

D1<L1>: 03/04 14:55:13.282519 task 0 k151f1rp02.kgn.ibm.com 10

D1<L1>: 03/04 14:55:13.282677 task 1 k151f1rp02.kgn.ibm.com 10

D1<L1>: node allocation strategy = 2

INFO: 0031-364 Contacting LoadLeveler to set and query information

for interactive job

D1<L1>: 03/04 14:55:13.422268 Calling ll_init_job.

D1<L1>: 03/04 14:55:13.460772 ll_init_job returned.

D1<L1>: 03/04 14:55:13.461426 Job Command String:

#@ job_type = parallel

#@ environment = COPY_ALL

#@ node_usage = shared

#@ bulkxfer = NO

#@ class = No_Class

#@ queue

INFO: 0031-380 LoadLeveler step ID is k151f1rp02.kgn.ibm.com.324.0

INFO: 0031-118 Host k151f1rp02.kgn.ibm.com requested for task 0

INFO: 0031-118 Host k151f1rp02.kgn.ibm.com requested for task 1

INFO: 0031-119 Host k151f1rp02.kgnk.ibm.com allocated for task 0

12 IBM PE for AIX 5L V4 R3.0: Introduction

INFO: 0031-120 Host address 89.116.157.7 allocated for task 0

INFO: 0031-377 Using en0 for mpi euidevice for task 0

INFO: 0031-119 Host k151f1rp02.kgn.ibm.com allocated for task 1

INFO: 0031-120 Host address 89.116.157.7 allocated for task 1

INFO: 0031-377 Using en0 for mpi euidevice for task 1

D1<L1>: Entering pm_contact, jobid is 0

D1<L1>: Jobid = 1110510899

D1<L1>: Spawning /etc/pmdv4 on all nodes

D1<L1>: 1 master nodes

D1<L1>: 03/04 14:55:15.377008 Calling ll_spawn_connect for node 0,

host name k151f1rp02.kgn.ibm.com.

D1<L1>: TASKID is 0

D1<L1>: 03/04 14:55:15.377576 ll_spawn_connect returned for node 0,

socket fd 6,

host name k151f1rp02.kgn.ibm.com.

D1<L1>: 03/04 14:55:15.377680 Calling pm_spawn_ready.

D1<L1>: 03/04 14:55:15.378916 returned from pm_spawn_ready.

D1<L1>: Socket file descriptor for master 0 (k151f1rp02.kgn.ibm.com) is 6

D1<L1>: SSM_read on socket 6, source = 0, task id: 0, nread: 12, type:3.

D1<L1>: Leaving pm_contact, jobid is 1110510899

D1<L1>: attempting to bind socket to /tmp/s.pedb.544784.1079

 0:INFO: 0031-724 Executing program: <hello_world_c>

 0:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1

 1:INFO: 0031-724 Executing program: <hello_world_c>

 1:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1

 0:INFO: DEBUG_LEVEL changed from 0 to 1

 1:INFO: DEBUG_LEVEL changed from 0 to 1

 0:D1<L1>: In mp_main, mp_main will not be checkpointable

 0:D1<L1>: mp_euilib is <ip>

 0:Hello, World!

 0:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 1:D1<L1>: In mp_main, mp_main will not be checkpointable

 1:D1<L1>: mp_euilib is <ip>

 1:Hello, World!

 1:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

INFO: 0031-656 I/O file STDOUT closed by task 0

INFO: 0031-656 I/O file STDERR closed by task 0

INFO: 0031-656 I/O file STDOUT closed by task 1

INFO: 0031-656 I/O file STDERR closed by task 1

D1<L1>: Accounting data from task 1 for source 1:

D1<L1>: Accounting data from task 0 for source 0:

INFO: 0031-251 task 0 exited: rc=0

INFO: 0031-251 task 1 exited: rc=0

D1<L1>: All remote tasks have exited: maxx_errcode = 0

INFO: 0031-639 Exit status from pm_respond = 0

D1<L1>: Maximum return code from user = 0

The -infolevel messages give you more information about what is happening on

the home node, but if you want to see what is happening on the remote nodes, you

need to use the -pmdlog option. If you set -pmdlog to a value of yes, a log is

written to each of the remote nodes that tells you what POE did while running each

task.

If you issue the following command, a file is written in /tmp, of each remote node,

called mplog.jobid.taskid,

$ poe hello_world_c -procs 4 -pmdlog yes

If -infolevel is set to 3 or higher, The job ID will be displayed in the output. If you

do not know what the job ID is, it is probably the most recent log file. If you are

Chapter 1. Understanding the environment 13

|

sharing the node with other POE users, the job ID will be one of the most recent

log files (but you own the file, so you should be able to tell).

Here is a sample log file. In this example, all four tasks are running on the same

node. For more information about how POE runs with multiple tasks on the same

node, see Appendix A, “A sample program to illustrate messages,” on page 97.

AIX Parallel Environment pmd4 version @(#) 2003/06/11 13:19:38

The ID of this process is 520240

The version of this pmd for version checking is 4100

The hostname of this node is k151f1rp02.kgn.ibm.com

The short hostname of this node is k151f1rp02

The taskid of this task is 0

HOMENAME: k151f1rp02.kgn.ibm.com

USERID: 1079

USERNAME: voe3

GROUPID: 100

GROUPNAME: usr

PWD: /u/voe3/pfc/samples/ch01

PRIORITY: 0

NPROCS: 4

PMDLOG: 1

NEWJOB: 0

PDBX: 0

AFSTOKEN: 5765-F83 AIX Parallel Environment

LIBPATH: /usr/lpp/ppe.poe/lib/ip

VERSION (of home node): 4100

JOBID: 1110380176

ENVC recv’d

envc: 31

envc is 31

env[0] = _=hello_world_c

env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man

env[2] = LANG=C

env[3] = LOGIN=voe3

env[4] =

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin:/usr/bin/X11:/sbin:

/usr/local/bin:/usr/lpp/LoadL/full/bin:.

env[5] = LC__FASTMSG=true

env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370

env[7] = LOGNAME=voe3

env[8] = MAIL=/usr/spool/mail/voe3

env[9] = LOCPATH=/usr/lib/nls/loc

env[10] = USER=voe3

env[11] = AUTHSTATE=compat

env[12] = SHELL=/bin/ksh

env[13] = ODMDIR=/etc/objrepos

env[14] = HOME=/u/voe3

env[15] = TERM=aixterm

env[16] = MAILMSG=[YOU HAVE NEW MAIL]

env[17] = PWD=/u/voe3/pfc/samples/ch01

env[18] = TZ=EST5EDT

env[19] = ENV=/u/voe3/.kshrc

env[20] = A__z=! LOGNAME

env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

env[22] = MP_PROCS=4

env[23] = MP_PMDLOG=YES

env[24] = MP_EUIDEVICE=en0

env[25] = MP_PGMMODEL=SPMD

env[26] = MP_TASK_AFFINITY=-1

env[27] = MP_MSG_API=MPI

env[28] = MP_ISATTY_STDIN=1

env[29] = MP_ISATTY_STDOUT=1

env[30] = MP_ISATTY_STDERR=1

Couldn’t open /etc/poe.limits

MASTERS: 1

TASKS: 4:0:1:2:3

14 IBM PE for AIX 5L V4 R3.0: Introduction

Total number of tasks is 4

Task id for task 1 is 0

Task id for task 2 is 1

Task id for task 3 is 2

Task id for task 4 is 3

TASK_ENV: 0:1 MP_CHILD_INET_ADDR=@1:89.116.107.5,ip 1:1

MP_CHILD_INET_ADDR=@1:9.114.127.2,

ip 2:1 MP_CHILD_INET_ADDR=@1:89.116.107.5,ip 3:1

MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

Number of environment variables is 1

Environment specific data for task 1, task id 0 :

 -- MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

Number of environment variables is 1

Environment specific data for task 2, task id 1 :

 -- MP_CHILD_INET_ADDR=@1:89.116.107.52,ip

Number of environment variables is 1

Environment specific data for task 3, task id 2 :

 -- MP_CHILD_INET_ADDR=@1:89.116.107.52,ip

Number of environment variables is 1

Environment specific data for task 4, task id 3 :

 -- MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

Initial data msg received and parsed

Info level = 1

Doing ruserok() user validation

User validation complete

About to do user root chk

User root check complete

spkeyfuncs not found, continuing....

ident_match not found, continuing....

task information parsed

sb_max used for sndbuf, sndbuf set to 1048576

STDOUT socket SO_SNDBUF set to 1048576

STDOUT socket SO_RCVBUF set to 67424

main thread id is 1 before Setup signal handler for termination.

newjob is 0.

msg read, type is 13

string = <hello_world_c> SSM_CMD_STR recv’d

command string is <hello_world_c>

0: pm_putargs: argc = 1, k = 1

1: pm_putargs: argc = 1, k = 1

2: pm_putargs: argc = 1, k = 1

3: pm_putargs: argc = 1, k = 1

SSM_CMD_STR parsed

SSM_EXT_DEBUG msg, type is 46

child pipes created

Task 0 OS version 5 , release 2

child: pipes successfully duped for task 0

0: MP_COMMON_TASKS is <3:1:2:3>

0: partition id is <1110380176>

Task 1 OS version 5 , release 2

child: pipes successfully duped for task 1

1: MP_COMMON_TASKS is <3:0:2:3>

1: partition id is <1110380176>

after initgroups (*group_struct).gr_gid = 100

after initgroups (*group_struct).gr_name = usr

Task 2 OS version 5 , release 2

child: pipes successfully duped for task 2

2: MP_COMMON_TASKS is <3:0:1:3>

2: partition id is <1110380176>

pmd child: core limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: rss limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: stack limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: data segment limit is 9223372036854775807,

hard limit is 9223372036854775807

Chapter 1. Understanding the environment 15

pmd child: cpu time limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: file size limit is 9223372036854775807,

hard limit is 9223372036854775807

0: (*group_struct).gr_gid = 100

0: (*group_struct).gr_name = usr

0: userid, groupid and cwd set!

0: current directory is /u/voe3/pfc/samples/ch01

0: about to start the user’s program

0: argument list:

argv[0] for task 0 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 0:

 task_env[0] = MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

child: common environment data for all tasks:

 env[0] = _=hello_world_c

 env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man

 env[2] = LANG=C

 env[3] = LOGIN=voe3

 env[4] = PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin:

/usr/bin/X11:/sbin:/usr/local/bin:/usr/lpp/LoadL/full/bin:.

 env[5] = LC__FASTMSG=true

 env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370

 env[7] = LOGNAME=voe3

 env[8] = MAIL=/usr/spool/mail/voe3

 env[9] = LOCPATH=/usr/lib/nls/loc

 env[10] = USER=voe3

 env[11] = AUTHSTATE=compat

 env[12] = SHELL=/bin/ksh

 env[13] = ODMDIR=/etc/objrepos

 env[14] = HOME=/u/voe3

 env[15] = TERM=aixterm

 env[16] = MAILMSG=[YOU HAVE NEW MAIL]

 env[17] = PWD=/u/voe3/pfc/samples/ch01

 env[18] = TZ=EST5EDT

 env[19] = ENV=/u/voe3/.kshrc

 env[20] = A__z=! LOGNAME

 env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

 env[22] = MP_PROCS=4

 env[23] = MP_PMDLOG=YES

 env[24] = MP_EUIDEVICE=en0

 env[25] = MP_PGMMODEL=SPMD

 env[26] = MP_TASK_AFFINITY=-1

 env[27] = MP_MSG_API=MPI

 env[28] = MP_ISATTY_STDIN=1

 env[29] = MP_ISATTY_STDOUT=1

 env[30] = MP_ISATTY_STDERR=1

0: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

parent: task 0 forked, child pid is 524460

Task 3 OS version 5 , release 2

child: pipes successfully duped for task 3

3: MP_COMMON_TASKS is <3:0:1:2>

3: partition id is <1110380176>

attach data sent for task 0

parent: task 1 forked, child pid is 549054

attach data sent for task 1

parent: task 2 forked, child pid is 516106

attach data sent for task 2

1: (*group_struct).gr_gid = 100

1: (*group_struct).gr_name = usr

parent: task 3 forked, child pid is 417868

attach data sent for task 3

16 IBM PE for AIX 5L V4 R3.0: Introduction

1: userid, groupid and cwd set!

1: current directory is /u/voe3/pfc/samples/ch01

1: about to start the user’s program

1: argument list:

argv[0] for task 1 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 1:

 task_env[0] = MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

1: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

2: (*group_struct).gr_gid = 100

2: (*group_struct).gr_name = usr

2: userid, groupid and cwd set!

2: current directory is /u/voe3/pfc/samples/ch01

2: about to start the user’s program

2: argument list:

argv[0] for task 2 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 2:

 task_env[0] = MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

2: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

3: (*group_struct).gr_gid = 100

3: (*group_struct).gr_name = usr

3: userid, groupid and cwd set!

3: current directory is /u/voe3/pfc/samples/ch01

3: about to start the user’s program

3: argument list:

argv[0] for task 3 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 3:

 task_env[0] = MP_CHILD_INET_ADDR=@1:89.116.107.5,ip

3: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 0, select time is 600

pulse sent at 1109966440 count is 0

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 26, srce: 0, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 524460

select: rc = 3

pulse is on, curr_time is 1109966440, send_time is 1109966440, select time is 600

in pmd select, SSM_read ok, SSM_type=34.

pulse received at 1109966440 received count is 0

pmd parent: STDOUT read OK for task 0

0: STDOUT: Hello, World!

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 47, srce: 0, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 17, srce: 0, dest: -1, bytes: 2

select: rc = 1

Chapter 1. Understanding the environment 17

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 26, srce: 1, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 549054

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 1

1: STDOUT: Hello, World!

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 47, srce: 1, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 17, srce: 1, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 26, srce: 2, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 516106

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 2

2: STDOUT: Hello, World!

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 47, srce: 2, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 17, srce: 2, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 26, srce: 3, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 417868

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 3

3: STDOUT: Hello, World!

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 47, srce: 3, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 17, srce: 3, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

18 IBM PE for AIX 5L V4 R3.0: Introduction

select time is 600

in pmd select, SSM_read ok, SSM_type=5.

select: rc = 5

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

3: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

select: rc = 7

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

0: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

1: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

2: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

in pmd signal handler for task 3, signal 20

3: wait status is 00000000

Exiting child for task 3, PID: 417868

err_data for task 3 is 0

2: wait status is 00000000

Exiting child for task 2, PID: 516106

err_data for task 2 is 0

1: wait status is 00000000

Exiting child for task 1, PID: 549054

err_data for task 1 is 0

0: wait status is 00000000

Exiting child for task 0, PID: 524460

err_data for task 0 is 0

in pmd signal handler, wait returned -1...

parent: child exited and all pipes closed for all tasks

err_data for task 0 is 0

err_data for task 1 is 0

err_data for task 2 is 0

err_data for task 3 is 0

pmd_exit reached!, exit code is 0

No collective communication shared memory segments to clean up.

Appendix A, “A sample program to illustrate messages,” on page 97 includes an

example of setting -infolevel to 6, and explains the important lines of output.

Chapter 1. Understanding the environment 19

20 IBM PE for AIX 5L V4 R3.0: Introduction

Chapter 2. Message passing

If you are familiar with message passing parallel programming, and you are familiar

with message passing protocols, you can skip ahead to Chapter 3, “Diagnosing and

correcting common problems,” on page 35 for a discussion on using the PE tools. If

you are familiar with message passing parallel programming, but you would like to

know more about the PE message passing protocols, look at the information in

“Protocols supported” on page 32.

This is a discussion of some of the techniques for creating a parallel program, using

message passing, and the various advantages and pitfalls associated with each

technique. It does not provide an in-depth tutorial on writing parallel programs.

Instead, it is an introduction to basic message passing parallel concepts.

To create a successful parallel program, start with a working sequential program.

Complex sequential programs are difficult to get working correctly, without also

having to worry about the additional complexity introduced by parallelism and

message passing. It is easier to convert a working serial program to parallel than it

is to create a parallel program from scratch. As you become proficient at creating

parallel programs, you will develop an awareness of which sequential techniques

translate better into parallel implementations. Once aware, you can then make a

point of using these techniques in your sequential programs. This is a discussion of

some of the fundamentals of creating parallel programs.

There are two common techniques for turning a sequential program into a parallel

program; data decomposition and functional decomposition. Data decomposition

means distributing the data that the program is processing among the parallel tasks.

Each parallel task does approximately the same thing but on a different set of data.

With functional decomposition, the function that the application is performing is

distributed among the tasks. Each task operates on the same data, but does

something different. Most parallel programs do not use data decomposition or

functional decomposition exclusively. Rather, they use a mixture of the two,

weighted more toward one type or the other. One way to implement either form of

decomposition is through the use of message passing.

The message passing model

The message passing model of communication is typically used in distributed

memory systems, where each processor node owns private memory, and is linked

by an interconnection network. The high performance switch provides the

interconnection network needed for high-speed exchange of messages. With

message passing, each task operates exclusively in a private environment, but

must cooperate with other tasks to interact. In this situation, tasks must exchange

messages to interact with one another.

The challenge of the message passing model is in reducing message traffic over

the interconnection network while ensuring that the correct and updated values of

the passed data are promptly available to the tasks, when required. Optimizing

message traffic boosts performance.

Synchronization is the act of forcing events to occur at the same time or in a certain

order. Synchronization requires taking into account the logical dependence and the

order of precedence among the tasks. You can describe the message passing

model as self-synchronizing because the mechanism of sending and receiving

© Copyright IBM Corp. 1993, 2006 21

|
|
|
|
|
|
|
|
|

messages involves implicit synchronization points. To put it another way, a message

cannot be received if it has not already been sent.

Data decomposition

A good technique for making a sequential application parallel is to look for loops

where each iteration does not depend on any prior iteration (this is also a

prerequisite for either unrolling or eliminating loops). An example of a loop that has

dependencies on prior iterations is the loop for computing the Factorial series. The

value calculated by each iteration depends on the value resulting from the previous

pass. If each iteration of a loop does not depend on a previous iteration, the data

being processed can be processed in parallel, with two or more iterations being

performed simultaneously.

The C program example below includes a loop with independent iterations. This

example does not include the routines for computing the coefficient and determinant

because they are not part of the parallelization at this point.

/***

*

* Matrix Inversion Program - serial version

*

* To compile:

* cc -o inverse_serial inverse_serial.c

*

***/

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

float determinant(float **matrix,

 int size,

 int * used_rows,

 int * used_cols,

 int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

 };

#define ROWS 8

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 rows = ROWS;

 /* Allocate markers to record rows and columns to be skipped */

 /* during determinant calculation */

22 IBM PE for AIX 5L V4 R3.0: Introduction

used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 inverse = (float **) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Compute and print determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 printf("\nis %f\n",determ);

 fflush(stdout);

 assert(determ!=0);

 for(i=0;i<rows;i++)

 {

 for(j=0;j<rows;j++)

 {

 inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

 }

 }

 printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 return (0);

}

Before talking about making the algorithm parallel, look at what is necessary to

create the program with PE. The example below shows the same program, but it is

now aware of PE. You do this by using three calls in the beginning of the routine,

and one at the end.

The first of these calls (MPI_Init) initializes the MPI environment, and the last call

(MPI_Finalize) closes the environment. MPI_Comm_size sets the variable tasks to

the total number of parallel tasks running this application, and MPI_Comm_rank

sets me to the task ID of the particular instance of the parallel code that invoked it.

MPI_Comm_size actually gets the size of the communicator you pass in and

MPI_COMM_WORLD is a predefined communicator that includes everybody. For

more information about these calls, IBM Parallel Environment: MPI Subroutine

Reference or other MPI publications may be of some help.

/**

*

* Matrix Inversion Program - serial version enabled for parallel environment

*

* To compile:

* mpcc -g -o inverse_parallel_enabled inverse_parallel_enabled.c

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

#include<mpi.h>

Chapter 2. Message passing 23

float determinant(float **matrix,int size, int * used_rows, int * used_cols,

 int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};

#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 MPI_Status status[ROWS]; /* Status of messages */

 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */

 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* Allocate markers to record rows and columns to be skipped */

 /* during determinant calculation */

 used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 inverse = (float **) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Compute and print determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 printf("\nis %f\n",determ);

 fflush(stdout);

 for(i=0;i<rows;i++)

 {

 for(j=0;j<rows;j++)

 {

 inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

 }

 }

24 IBM PE for AIX 5L V4 R3.0: Introduction

printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 /* Wait for all parallel tasks to get here, then quit */

 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();

 exit(0);

}

float determinant(float **matrix,int size, int * used_rows, int * used_cols,

 int depth)

 {

 int col1, col2, row1, row2;

 int j,k;

 float total=0;

 int sign = 1;

 /* Find the first unused row */

 for(row1=0;row1<size;row1++)

 {

 for(k=0;k<depth;k++)

 {

 if(row1==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

 assert(row1<size);

 if(depth==(size-2))

 {

/* There are only 2 unused rows/columns left */

/* Find the second unused row */

for(row2=row1+1;row2<size;row2++)

 {

 for(k=0;k<depth;k++)

 {

 if(row2==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

assert(row2<size);

/* Find the first unused column */

for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col1<size);

/* Find the second unused column */

for(col2=col1+1;col2<size;col2++)

 {

 for(k=0;k<depth;k++)

 {

 if(col2==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

Chapter 2. Message passing 25

break;

 }

assert(col2<size);

/* Determinant = m11*m22-m12*m21 */

return matrix[row1][col1]*matrix[row2][col2]

-matrix[row2][col1]*matrix[row1] [col2];

 }

 /* There are more than 2 rows/columns in the matrix being processed */

 /* Compute the determinant as the sum of the product of each element */

 /* in the first row and the determinant of the matrix with its row */

 /* and column removed */

 total = 0;

 used_rows[depth] = row1;

 for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k<depth) /* This column is used */

 continue;

 used_cols[depth] = col1;

 total += sign*matrix[row1][col1]*determinant(matrix,size,

 used_rows,used_cols,depth+1);

 sign=(sign==1)?-1:1;

 }

 return total;

 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)

{

 int i,j;

 for(i=0;i<rows;i++)

 {

 for(j=0;j<cols;j++)

 {

 fprintf(fptr,"%10.4f ",mat[i][j]);

 }

 fprintf(fptr,"\n");

 }

 fflush(fptr);

}

float coefficient(float **matrix,int size, int row, int col)

{

 float coef;

 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));

 uc = malloc(size*sizeof(matrix));

 ur[0]=row;

 uc[0]=col;

 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);

 return coef;

}

In this particular example Matrix Inversion Program - serial version enabled for

parallel environment each parallel task is going to determine the entire inverse

matrix, and they are all going to print it out. In the program Matrix Inversion

Program - serial version, the output of all the tasks is intermixed, so it is difficult to

figure out what the answer really is.

26 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|
|

A better approach is to distribute the work among several parallel tasks and collect

the results when they are done. In this example, the loop that computes the

elements of the inverse matrix simply goes through the elements of the inverse

matrix, computes the coefficient, and divides it by the determinant of the matrix.

Since there is no relationship between elements of the inverse matrix, they can all

be computed in parallel.

Every communication call has an associated cost, so you need to balance the

benefit of parallelism with the cost of communication. If you were to totally

parallelize the inverse matrix element computation, each element would be derived

by a separate task. The cost of collecting those individual values back into the

inverse matrix would be significant. It might also outweigh the benefit of having

reduced the computation cost and time by running the job in parallel. So, instead,

you are going to compute the elements of each row in parallel, and send the values

back, one row at a time. This way you spread some of the communication overhead

over several data values. In this case, you will execute loop 1 in parallel in this next

example.

*

* Matrix Inversion Program - First parallel implementation

* To compile:

* mpcc -g -o inverse_parallel inverse_parallel.c

*

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

#include<mpi.h>

float determinant(float **matrix,int size, int * used_rows,

 int * used_cols, int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 },

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};

#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 MPI_Status status[ROWS]; /* Status of messages */

 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */

Chapter 2. Message passing 27

MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* You need exactly one task for each row of the matrix plus one task */

 /* to act as coordinator. If you didn’t have this, the last task */

 /* reports the error (so everybody doesn’t put out the same message */

 if(tasks!=rows+1)

 {

 if(me==tasks-1)

 fprintf(stderr,"%d tasks required for this demo"

 "(one more than the number of rows in matrix\n",rows+1)";

 exit(-1);

 }

 /* Allocate markers to record rows and columns to be skipped */

 /* during determinant calculation */

 used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Everyone computes the determinant (to avoid message transmission) */

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 if(me==tasks-1)

 {/* The last task acts as coordinator */

 inverse = (float**) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 }

 /* Print the determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 printf("\nis %f\n",determ);

 /* Collect the rows of the inverse matrix from the other tasks */

 /* First, post a receive from each task into the appropriate row */

 for(i=0;i<rows;i++)

 }

 MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i]));

 }

 /* Then wait for all the receives to complete */

 MPI_Waitall(rows,req,status);

 printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 }

 else

 {/* All the other tasks compute a row of the inverse matrix */

 int dest = tasks-1;

 float *one_row;

 int size = rows*sizeof(*one_row);

 one_row = (float*) malloc(size);

 for(j=0;j<rows;j++)

 {

 one_row[j] = coefficient(matrix,rows,j,me)/determ;

 }

 /* Send the row back to the coordinator */

 MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);

28 IBM PE for AIX 5L V4 R3.0: Introduction

}

/* Wait for all parallel tasks to get here, then quit */

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

}

exit(0);

Functional decomposition

Parallel servers and data mining applications are examples of functional

decomposition. With functional decomposition, the function that the application is

performing is distributed among the tasks. Each task operates on the same data,

but does something different. The sine series algorithm is also an example of

functional decomposition. With this algorithm, the work being done by each task is

trivial. The cost of distributing data to the parallel tasks could outweigh the value of

running the program in parallel, and parallelism would increase total time. Another

approach to parallelism is to invoke different functions, each of which processes all

of the data simultaneously. This is possible as long as the final or intermediate

results of any function are not required by another function. For example, searching

a matrix for the largest and smallest values as well as a specific value could be

done in parallel.

This is a simple example, but suppose the elements of the matrix were arrays of

polynomial coefficients. Further, suppose the search involved actually evaluating

different polynomial equations using the same coefficients. In this case, it would

make sense to evaluate each equation separately.

On a simpler scale, let us look at the series for the sine function:

 The serial approach to solving this problem is to loop through the number of terms

desired, accumulating the factorial value and the sine value. When the appropriate

number of terms has been computed, the loop exits. The following example does

exactly this. In this example, you have an array of values for which you want the

sine, and an outer loop would repeat this process for each element of the array.

Since you do not want to recompute the factorial each time, you need to allocate an

array to hold the factorial values and compute them outside the main loop.

/**

*

* Series Evaluation - serial version

*

* To compile:

* cc -o series_serial series_serial.c -lm

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<math.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,

 0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

#define TERMS 8

int main(int argc, char **argv)

Chapter 2. Message passing 29

{

 double divisor[TERMS], sine;

 int a, t, angles = sizeof(angle)/sizeof(angle[0]);

 /* Initialize denominators of series terms */

 divisor[0] = 1;

 for(t=1;t<TERMS;t++)

 {

 divisor[t] = -2*t*(2*t+1)*divisor[t-1];

 }

 /* Compute sine of each angle */

 for(a=0;a<angles;a++)

 {

 sine = 0;

 /* Sum the terms of the series */

 for(t=0;t<TERMS;t++)

 {

 sine += pow(angle[a],(2*t+1))/divisor[t];

 }

 printf("sin(%lf) + %lf\n",angle[a],sine);

 }

}

In a parallel environment, you could assign each term to one task and just

accumulate the results on a separate node. In fact, that is what the following

example does.

/**

*

* Series Evaluation - parallel version

*

* To compile:

* mpcc -g -o series_parallel series_parallel.c -lm

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<math.h>

#include<mpi.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,

 0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

int main(int argc, char **argv)

{

 double data, divisor, partial, sine;

 int a, t, angles = sizeof(angle)/sizeof(angle[0]);

 int me, tasks, term;

 MPI_Init(&argc,&argv); /* Initialize MPI */

 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 term = 2*me+1; /* Each task computes a term */

 /* Scan the factorial terms through the group members */

 /* Each member will effectively multiply the product of */

 /* the result of all previous members by its factorial */

 /* term, resulting in the factorial up to that point */

 if(me==0)

 data = 1.0;

 else

 data = -(term-1)*term;

 MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

 /* Compute sine of each angle */

30 IBM PE for AIX 5L V4 R3.0: Introduction

for(a=0;a<angles;a++)

 {

 partial = pow(angle[a],term)/divisor;

 /* Pass all the partials back to task 0 and */

 /* accumulate them with the MPI_SUM operation */

 MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);

 /* The first task has the total value */

 if(me==0)

 {

 printf("sin(%lf) + %lf\n",angle[a],sine);

 }

 }

 MPI_Finalize();

}

With this approach, each task i uses its position in the MPI_COMM_WORLD

communicator group to compute the value of one term. It first computes its working

value as 2i+1 and calculates the factorial of this value. Since (2i+1)! is (2i-1)! x 2i x

(2i+1), if each task could get the factorial value computed by the previous task, all it

would have to do is multiply it by 2i x (2i+1). Fortunately, MPI provides the

capability to do this with the MPI_SCAN function. When MPI_SCAN is invoked on

the first task in a communication group, the result is the input data to MPI_SCAN.

When MPI_SCAN is invoked on subsequent members of the group, the result is

obtained by invoking a function on the result of the previous member of the group

and its input data.

The MPI standard is documented in MPI: A Message-Passing Interface Standard,

Version 1.1 and is extended in MPI: A Message-Passing Interface Standard,

Version 2.0, both of which are available from the University of Tennessee. The

standard does not specify how to implement the scan function, so a particular

implementation does not have to obtain the result from one task and pass it on to

the next for processing. This is, however, a convenient way of visualizing the scan

function, and the remainder of the discussion will assume that this is happening.

In the example, the function invoked is the built-in multiplication function,

MPI_PROD. Task 0 (which is computing 1!) sets its result to 1. Task 2 is computing

3! which it obtains by multiplying 2 x 3 by 1! (the result of Task 0). Task 3 multiplies

3! (the result of Task 2) by 4 to get 4!. This continues until all the tasks have

computed their factorial values. The input data to the MPI_SCAN calls is made

negative so the signs of the divisors will alternate between plus and minus.

Once the divisor for a term has been computed, the loop through all the angles

(theta) can be done. The partial term is computed as:

 Then, MPI_REDUCE is called which is similar to MPI_SCAN except that instead of

calling a function on each task, the tasks send their raw data to Task 0, which

invokes the function on all data values. The function being invoked in the example

is MPI_SUM which just adds the data values from all of the tasks. Then, Task 0

prints out the result.

Duplication versus redundancy

In the matrix inversion program, each task goes through the process of allocating

the matrix and copying the initialization data into it. So why does not one task do

Chapter 2. Message passing 31

this and send the result to all the other tasks? This example has a trivial

initialization process, but in a situation where initialization requires complex

time-consuming calculations, this question is even more important.

To understand the answer to this question and, more importantly, be able to apply

the understanding to answering the question for other applications, you need to

stop and consider the application as a whole. If one task of a parallel application

takes on the role of initializer, two things happen. First, all of the other tasks must

wait for the initializer to complete (assuming that no work can be done until

initialization is completed). Second, some sort of communication must occur to get

the results of initialization distributed to all the other tasks. This not only means that

there is nothing for the other tasks to do while one task is doing the initializing,

there is also a cost associated with sending the results out. Although replicating the

initialization process on each of the parallel tasks seems like unnecessary

duplication, it allows the tasks to start processing more quickly because they do not

have to wait to receive the data.

So, should all initialization be done in parallel? Not necessarily. If the initialization is

just computation and setup based on input parameters, each parallel task can

initialize independently. Although this seems counter-intuitive at first, because the

effort is redundant, for the reasons given above, it is the right answer. Eventually

you will get used to it. However, if initialization requires access to system resources

that are shared by all the parallel tasks (such as file systems and networks), having

each task attempt to obtain the resources will create contention in the system and

hinder the initialization process. In this case, it makes sense for one task to access

the system resources on behalf of the entire application. In fact, if multiple system

resources are required, you could have multiple tasks access each of the resources

in parallel. Once the data has been obtained from the resource, you need to decide

whether to share the raw data among the tasks and have each task process it, or

have one task perform the initialization processing and distribute the results to all

the other tasks. You can base this decision on whether the amount of data

increases or decreases during the initialization processing. Of course, you want to

transmit the smaller amount.

Duplicating the same work on all the remote tasks (which is not the same as

redundancy, which implies something can be eliminated) is not bad if:

v The work is inherently serial

v The work is parallel, but the cost of computation is less than the cost of

communication

v The work must be completed before tasks can proceed

v Communication can be avoided by having each task perform the same work.

Protocols supported

To perform data communication, PE interfaces with a low-level communication API

(LAPI), which is a reliable transport provided with AIX. LAPI interfaces with a lower

level protocol, running in the user space (User Space protocol), which offers a

low-latency and high-bandwidth communication path to user applications, running

over a high performance switch. LAPI alternatively interfaces with the IP layer.

Some hardware adapters, such as InfiniBand HCA, support direct access to the

adapter hardware, so that messages can be sent bypassing the operating system

kernel. This mode of message passing is called 'User Space', and is supported by

Parallel Environment on specific adapters. For optimal performance, PE uses the

32 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|

User Space (US) protocol as its communication path. However, PE also lets you

run parallel applications that use the IP interface of LAPI.

The User Space interface allows user applications to take full advantage of the high

speed interconnect, and you should use it whenever communication is a critical

issue (for instance, when running a parallel application in a production

environment). With LoadLeveler, you can use the User Space interface by more

than one process per node at a given time.

Both the IP and User Space interfaces allow multiple tasks per job on a single

node. As a result, you can use either interface in development or test environments,

where more attention is paid to the correctness of the parallel program than to its

speed-up, and therefore, more users can work on the same nodes at a given time.

In both cases, data exchange always occurs between processes, without involving

the POE Partition Manager daemon.

Shared memory message passing

For MPI programs in which multiple tasks run on the same computing node, using

shared memory to send messages between tasks may be beneficial. This applies to

programs running over either the IP or User Space protocol.

By setting the MP_SHARED_MEMORY environment variable to YES, you can

select the shared memory protocol. If all the tasks of your program run on the same

node, and you specify the shared memory protocol, shared memory is used

exclusively for all MPI communications.

The default for MP_SHARED_MEMORY is YES, so explicitly setting it is not

required.

For more information on PE’s shared memory support, see IBM Parallel

Environment: Operation and Use, Volume 1.

To thread or not to thread - protocol implications

If you are unfamiliar with POSIX threads, do not try to learn both threads and MPI

all at once. Get some experience writing and debugging single process

multi-threaded programs first, then tackle multiprocess multithreaded programs.

A parallel program using MPI normally depends on task parallelism with two or

more tasks (or processes) that communicate by message passing. Each of these

tasks, by default, has one user thread. An application may explicitly create

additional threads within each task, resulting in thread level as well as task level

parallelism. If thread creation is done, the application must manage both levels of

parallelism properly.

While each threaded task has more than one independent instruction stream, all of

a task’s threads share the same address space, file system, and environment

variables. In addition, all the threads in a threaded MPI task have the same MPI

communicators, data types, ranks, and so forth.

In each threaded MPI task, the MPI_INIT routine must be called before any thread

can make an MPI call, and all MPI calls must be completed before MPI_FINALIZE

is called. The principal difference between a threaded task and a non-threaded task

is that, in each threaded task, more than one blocking call may be in progress at

any given time.

Chapter 2. Message passing 33

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

The underlying communication subsystem provides thread-dispatching, so that all

blocking messages are given a chance to run when a message completes.

The MPI library creates the following service threads:

v A thread that periodically wakes up and calls the message passing dispatcher,

and handles interrupts generated by arriving packets.

v Responder threads used to implement MPI I/O.

The service threads above are terminated when MPI_FINALIZE is called. These

threads are not available to end users.

Thread debugging implications

To effectively debug the application, you must be aware of how threads are

dispatched. When a task is stopped, all threads are stopped. Each time you issue

an execution command, such as step over, step into, step return, or continue, all

the threads are released for execution until the next stop (at which time they are

stopped, even if they have not completed their work). This stop may be at a

breakpoint you set or the result of a step. A single step over an MPI routine may

prevent the MPI library threads from completely processing the message that is

being exchanged.

For example, if you wanted to debug the transfer of a message from a send node

to a receiver node, you would step over an MPI_SEND in your program on task 1,

switch to task 2, then step over the MPI_RECV on task 2. Unless the MPI threads

on task 1 and 2 have the opportunity to process the message transfer, it will appear

that the message was lost. Remember that the window of opportunity for the MPI

threads to process the message is brief, and is open only during the step over.

Otherwise, the threads will be stopped. Longer-running execution requests, of both

the sending and receiving nodes, allow the message to be processed and,

eventually, received.

For more information on debugging threaded and non-threaded MPI programs with

the PE debugging tool, (pdbx), see IBM Parallel Environment for AIX: Operation

and Use, Volume 2, which provides more detailed information on how to manage

and display threads.

For more information on the threaded MPI library, see IBM Parallel Environment:

MPI Programming Guide.

Checkpointing and restarting a parallel program

Checkpointing a parallel program is a mechanism for temporarily saving the state of

a parallel program at a specific point (checkpointing), and then later restarting it

from the saved state. When you checkpoint a program, the checkpointing function

captures the state of the application as well as all data, and saves it in a file. When

the program is restarted, the restart function retrieves the application information

from the file it saved. The program then starts running again from the place at

which it was saved.

For more information on PE’s checkpointing and restarting functions, see IBM

Parallel Environment: Operation and Use, Volume 1.

34 IBM PE for AIX 5L V4 R3.0: Introduction

|
|

|

|
|

|

|
|

|

|
|
|
|
|
|
|

|
|

Chapter 3. Diagnosing and correcting common problems

What do you do when something goes wrong with your parallel program? PE

provides ways to identify and correct problems that arise when you are developing

or executing your parallel program. This all depends on where in the process the

problem occurred and what the symptoms are.

This information is probably more useful if you use it in conjunction with IBM

Parallel Environment: Operation and Use, Volume 1 and IBM Parallel Environment

for AIX: Operation and Use, Volume 2. So, you might want to go find them, and

keep them on hand for reference.

Here are the steps, greatly abbreviated, in the basic process of creating a parallel

program:

1. Create and compile program

2. Start PE

3. Execute the program

4. Verify the output

5. Optimize the performance.

Problems can arise in any one of these steps, and knowing which tools to use to

identify, analyze and correct the problem is the first step. The remainder of this

section describes some of the common problems you might run into, and what to

do when they occur. The problems in this section are labeled according to the

symptom you might be experiencing.

Messages

Messages are an important part of diagnosing problems, so it is essential that you

have access to them and that they are at the correct level.

Message catalog errors

You may get message catalog errors. This usually means that the message catalog

could not be located or loaded. Check that your NLSPATH environment variable

includes the path where the message catalog is located. The environment variable

NLSPATH is used by the various PE components to find the appropriate message

catalogs. If the message catalogs are not in the proper place, or your environment

variables are not set properly, your system administrator can help.. Refer your

system administrator to “National language support (NLS)” on page xii for more

information.

The following are the PE message catalogs:

v pepoe.cat

v pempl.cat

v pepdbx.cat

v peperf.cat

Finding PE messages

There are a number of places that you can find PE messages:

v PE messages are displayed on the home node when it is running POE (STDERR

and STDOUT).

v If you set either the MP_PMDLOG environment variable or the -pmdlog

command line option to yes, PE messages are collected in the pmd log file of

each task, in /tmp (STDERR and STDOUT).

© Copyright IBM Corp. 1993, 2006 35

|
|
|
|

|
|
|
|
|

You can also use LookAt to look up message explanations. For more information on

how to do this see “Using LookAt to look up message explanations” on page xii

Logging POE errors to a file

You can also specify that diagnostic messages be logged to a file in /tmp on each

of the remote nodes of your partition by using the MP_PMDLOG environment

variable. The log file is called /tmp/mplog.jobid.taskid, where jobid is a unique

identifier and taskid is the task number. The jobid is the same for all remote nodes.

This file contains additional diagnostic information about why the user connection

was not made. If the file is not there, then pmd did not start. Check the

/etc/inetd.conf and /etc/services entries and the executability of pmd for the root

user ID again.

For more information about the MP_PMDLOG environment variable, see IBM

Parallel Environment: Operation and Use, Volume 1.

Message format

Knowing which component a message is associated is helpful when trying to

resolve a problem. PE messages include prefixes that identify the related

component. The message identifiers for the PE components are as follows:

0029-nnnn Parallel debugger (pdbx)

0031-nnn Parallel Operating Environment

0032-nnn Message Passing Interface

2554-nnn PE Benchmarker

2554-9nn Unified Trace Environment (UTE)

2660-nnnn LAPI

where:

v The first four, five, or six digits (0029, 0031, 0032, 2537, 2554, or 2554-9) identify

the PE component that issued the message.

v The last two, three, or four digits identify the sequence of the message in the

group.

For more information about PE messages, see IBM Parallel Environment:

Messages.

Diagnosing problems using IVP

The Installation Verification Program (IVP) can be a useful tool for diagnosing

problems. When you installed POE, you verified that everything turned out correctly

by running the IVP. It verified that the:

v Location of the libraries was correct

v Binaries existed

v Partition Manager daemon was executable

v POE files were in order

v Sample IVP programs compiled correctly.

The IVP can provide some important first clues when you experience a problem, so

you may want to rerun this program before you do anything else.

Cannot compile a parallel program

Programs for PE must be compiled with the current release of the compiler scripts

you are using, such as mpxlf_r, mpcc_r, or mpCC_r . If the command you are

trying to use cannot be found, make sure the installation was successful and that

your PATH environment variable contains the path to the compiler scripts. These

36 IBM PE for AIX 5L V4 R3.0: Introduction

|

|
|
|
|
|
|
|
|

|
|

||

|
|

|
|

commands call the Fortran, C, and C++ compilers respectively, so you also need to

make sure that the underlying compiler is installed and accessible. Your system

administrator should be able to assist you in verifying these things.

Cannot start a parallel job

Once you have successfully compiled your program, you either invoke it directly or

start POE and then submit the program to it. In both cases, POE is started to

establish communication with the parallel nodes. Problems that can occur at this

point include: POE does not start, or cannot connect to the remote nodes.

These problems can be caused by other problems on the home node (where you

are trying to submit the job), on the remote parallel nodes, or in the communication

subsystem that connects them. You need to make sure that all the things POE

expects to be set up really are set up. Here is what you do:

1. Make sure that you can execute POE. If you are a Korn shell user, type:

$ whence poe

If you are a C shell user, type:

$ which poe

If the result is just the shell prompt, you do not have POE in your path. It might

mean that POE is not installed, or that your path does not point to it. Check that

the file /usr/lpp/ppe.poe/bin/poe exists and is executable, and that your PATH

includes the directory /usr/lpp/ppe.poe/bin.

2. Type:

$ env | grep MP_

Look at the settings of the environment variables beginning with MP_, (the POE

environment variables). Check their values against what you expect, particularly

MP_HOSTFILE (where the list of remote host names is to be found), MP_RESD

(whether a job management system is to be used to allocate remote hosts) and

MP_RMPOOL (the pool from which the job management system is to allocate

remote hosts) values. If they are all not set, make sure that you have a file

named host.list in your current directory. This file must include the names of all

the remote parallel hosts that can be used. There must be at least as many

hosts available as the number of parallel processes you specified with the

MP_PROCS environment variable.

3. Type:

$ poe -procs 1

You should get the following message:

 0031-503 Enter program name and flags for each node: _

If you do get this message, POE has successfully loaded and established

communication with the first remote host in your host list file. It has also

validated your use of that remote host, and is ready to go to work. If you type a

command, for example, date, hostname, or env, you should get a response

when the command executes on the remote host (like you would from rsh).

If you get some other set of messages, then the message text should give you

some idea of where to look. Some common situations include:

v Cannot connect with the remote host

Chapter 3. Diagnosing and correcting common problems 37

The path to the remote host is unavailable. Check to make sure that you are

trying to connect to the host you think you are. If you are using LoadLeveler

to allocate nodes from a pool, you may want to allocate nodes from a known

list instead. ping the remote hosts in the list to see if a path can be

established to them. If it can, run rsh remote_host date to verify that the

remote host can be contacted and recognizes the host from which you

submitted the job, so it can send results back to you.

Check the /etc/services file on your home node, to make sure that the

Parallel Environment service is defined. Check the /etc/services and

/etc/inetd.conf files on the remote host to make sure that the PE service is

defined, and that the Partition Manager Daemon (pmd) program invoked by

inetd on the remote node is executable.

For more information on configuring rsh and inetd, see IBM Parallel

Environment: Installation.

v User not authorized on remote host

You need an ID on the remote host and your ID on the home host (the one

from which you are submitting the job) must be authorized to run commands

on the remote hosts. You do this by placing a $HOME/.rhosts file on the

remote hosts that identify your home host and ID. Brush up on “Access” on

page 2 if you need to. Even if you have a $HOME/.rhosts file, make sure

that you are not denied access the /etc/hosts.equiv file on the remote hosts.

In some installations, your home directory is a mounted file system on both

your home node and the remote host. In this case, check with your system

administrator.

Even if the remote host is actually the same machine as your home node,

you still need an entry in the .rhosts file.

v Other strangeness

On the home node, you can set or increase the MP_INFOLEVEL

environment variable (or use the -infolevel command line option) to get more

information out of POE while it is running. Although this does not give you

any more information about the error, or prevent it, it gives you an idea of

where POE was, and what it was trying to do when the error occurred. A

value of 6 gives you more information than you could ever want. See

Appendix A, “A sample program to illustrate messages,” on page 97 for an

example of the output from this setting.

Cannot execute a parallel program

Once POE can be started, you need to consider the problems that can arise in

running a parallel program, specifically initializing the message passing subsystem.

The way to eliminate this initialization as the source of POE startup problems is to

run a program that does not use message passing.

As discussed in “Running POE” on page 3, you can use POE to invoke a command

or serial program on remote nodes. If you can get a command or simple program,

like Hello, World!, to run under POE, but a parallel program does not, you can be

pretty sure the problem is in the message passing subsystem. The message

passing subsystem is the underlying implementation of the message passing calls

used by a parallel program (in other words, an MPI_SEND). POE code that is

linked into your executable by the compiler script (mpcc_r, mpCC_r, mpxlf_r)

initializes the message passing subsystem.

The Parallel Operating Environment (POE) supports two distinct communication

subsystems, an IP-based system, and User Space optimized adapter support. The

38 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|

subsystem choice is normally made at run time, by environment variables or

command line options passed to POE. Use the IP subsystem for diagnosing

initialization problems before worrying about the User Space (US) subsystem.

Select the IP subsystem by setting the environment variable:

$ export MP_EUILIB=ip

Use specific remote hosts in your host list file and do not use LoadLeveler (set

MP_RESD=no). If you do not have a small parallel program, compile the following

sample program, hello_parallel_world.

Here is the hello_parallel_world program in C:

/**

*

* Hello Parallel World C Example

*

* To compile:

* mpcc -o hello_parallel_world_c hello_parallel_world.c

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<mpi.h>

/* Basic program to demonstrate compilation and execution techniques */

int main()

{

MPI_Init(0,0);

printf("Hello, Parallel World!\n");

MPI_Finalize();

exit(0);

}

You compile it in C like this:

$ mpcc_r -o hello_parallel_world_c hello_parallel_world.c

And here is the hello_parallel_world program in Fortran:

c***

c*

c* Hello World Fortran Example

c*

c* To compile:

c* mpfort -o hello_parallel_world_f hello_parallel_world.f

c*

c***

c --

c Basic program to demonstrate compilation and execution techniques

c --

c program hello

implicit none

include mpif.h

INTEGER error

MPI_INIT(error)

write(6,*)’Hello, Parallel World!’

MPI_FINALIZE(error)

stop

end

You compile it in Fortan like this:

$ mpxlf_r -o hello_parallel_world_f hello_parallel_world.f

Chapter 3. Diagnosing and correcting common problems 39

Make sure that the executable can be loaded on the remote host that you are

using.

Type the following command, and then look at the messages on the console. For C,

type the command like this:

$ poe hello_parallel_world_c -procs 1 -infolevel 4

For Fortran, type the command like this:

$ poe hello_parallel_world_f -procs 1 -infolevel 4

If you get

Hello, Parallel World!

then the communication subsystem has been successfully initialized on the one

node and things should be looking good. Just for kicks, make sure that there are

two remote nodes in your host list file and try again with the following command. If

you are using C, type the command like this:

$ poe hello_parallel_world_c -procs 2

If you are using Fortran, type the command like this:

$ poe hello_parallel_world_f -procs 2

If and when hello_parallel_fortran works with IP and device en0 (the Ethernet), try

again with the high speed interconnect.

Each node has one name that it is known by on the external LAN to which it is

connected, and another name that it is known by on the interconnect. If the node

name you use is not the proper name for the network device you specify, the

connection is not made. You can put the names in your host list file. Otherwise, use

LoadLeveler to locate the nodes.

The following example assumes you are using C,

$ export MP_RESD=yes

$ export MP_EUILIB=ip

$ export MP_EUIDEVICE=sn_single

$ poe hello_parallel_world_c -procs 2 -ilevel 2

where sn_single is the switch device name. Look at the console lines containing

the string MPI euidevice. These identify the device name that is actually being

used for message passing (as opposed to the IP address that is used to connect

the home node to the remote hosts.) If these are not device names, check the

LoadLeveler configuration and the switch configuration.

Once IP works, and you are on a clustered server, you can try message passing

using the User Space device support, if User Space is supported in your

environment. Note that LoadLeveler allows you to run multiple tasks over the switch

adapter while in User Space.

You can run hello_parallel_world with the User Space library by typing the

following. This example assumes you are using C.

e$ export MP_RESD=yes

$ export MP_EUILIB=us

$ export MP_EUIDEVICE=sn_single

$ poe hello_parallel_world_c -procs 2 -ilevel 6

40 IBM PE for AIX 5L V4 R3.0: Introduction

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

The console log should inform you that you are using User Space support, and that

LoadLeveler is allocating the nodes for you. LoadLeveler tells you that it cannot

allocate the requested nodes if someone else is already running on them and has

requested dedicated use of the switch, or if User Space capacity has been

exceeded.

You can try for other specific nodes, or you can ask LoadLeveler for nonspecific

nodes from a pool. You can refer to IBM Parallel Environment: Operation and Use,

Volume 1.

The program runs but...

Using the parallel debugger

An important tool in analyzing your parallel program is the PE parallel debugger

(pdbx). In some situations, using a parallel debugger is just like using a debugger

for a serial program. In other situations, however, the parallel nature of the problem

introduces some subtle and not-so-subtle differences which you should understand

to use the debugger efficiently. While debugging a serial application, you can focus

your attention on the single problem area. In a parallel application, you have to shift

your attention between the various parallel tasks and also consider how the

interaction among the tasks may be affecting the problem.

The simplest problem

The simplest parallel program to debug is one where all the problems exist in a

single task. In this case, you can unhook all the other tasks from the debugger’s

control and use the parallel debugger as if it were a serial debugger. However, this

case is also the most rare.

The next simplest problem

The next simplest case is one where all the tasks are doing the same thing and

they all experience the problem that is being investigated. In this case, you can

apply the same debug commands to all the tasks, advance them in lockstep and

interrogate the state of each task before proceeding. In this situation, you need to

be sure to avoid debugging-introduced deadlocks. These are situations where the

debugger is trying to single-step a task past a blocking communication call, but the

debugger has not stepped the sender of the message past the point where the

message is sent. In these cases, control will not be returned to the debugger until

the message is received, but the message will not be sent until control returns to

the debugger.

OK, the worst problem

The most difficult situation to debug, and also the most common, is where not all

the tasks are doing the same thing and the problem spans two or more tasks. In

these situations, you have to be aware of the state of each task, and the

interrelations among tasks. You must ensure that blocking communication events

either have been or will be satisfied before stepping or continuing through them.

This means that the debugger has already executed the send for blocking receives,

or the send will occur at the same time (as observed by the debugger) as the

receive. Frequently, you may find that tracing back from an error state leads to a

message from a task to which you were not paying attention. In these situations,

your only choice may be to run the application again and focus on the events

leading up to the send.

Chapter 3. Diagnosing and correcting common problems 41

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

When a core dump is created

If your program creates a core dump, POE saves a copy of the core file so you can

debug it later. Unless you specify otherwise, POE saves the core file in the

coredir.taskid directory, under the current working directory, where taskid is the task

number. For example, if your current directory is /u/mickey, and your application

creates a core dump (segmentation fault) while running on the node that is task 4,

the core file will be located in /u/mickey/coredir.4 on that node.

You can control where POE saves the core file by using the -coredir POE

command line option or the MP_COREDIR environment variable.

Standard AIX corefiles can be large and often the information in the files appears at

a very low level. This can make the files difficult to debug. These large files can

also consume too much disk space, CPU time, and network bandwidth. To avoid

this problem, PE allows you to produce corefiles in the Ptools Lightweight Corefile

Format. Lightweight corefiles provide simple shared stack traces (listings of function

calls that led to the error), and consume less system resources than traditional

corefiles. For more information on lightweight corefiles and how to generate them,

see IBM Parallel Environment for AIX: Operation and Use, Volume 1.

Debugging core dumps

There are two ways you can use traditional core dumps to find problems in your

program. After running the program, you can examine the resulting core file to see if

you can find the problem. Or, you can try to view your program state by catching it

at the point where the problem occurs.

Examining core files: Before you can debug a core file, you first need to get one.

Let's just generate it. The following example is an MPI program in which

even-numbered tasks pass the answer to the meaning of life to odd-numbered

tasks. It is called bad_life.c, and here is what it looks like:

/***

*

* bad_life program

* To compile:

* mpcc -g -o bad_life bad_life.c

*

***/

#include <stdio.h>

#include <mpi.h>

void main(int argc, char *argv[])

{

 int taskid;

 MPI_Status stat;

 /* Find out number of tasks/nodes. */

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 if ((taskid % 2) == 0)

 {

 char *send_message = NULL;

 send_message = (char *) malloc(10);

 strcpy(send_message, "Forty Two");

 MPI_Send(send_message, 10, MPI_CHAR, taskid+1, 0,

 MPI_COMM_WORLD);

 free(send_message);

42 IBM PE for AIX 5L V4 R3.0: Introduction

} else

 {

 char *recv_message = NULL;

 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

 MPI_COMM_WORLD, &stat);

 printf("The answer is %s\n", recv_message);

 free(recv_message);

 }

 printf("Task %d complete.\n",taskid);

 MPI_Finalize();

 exit(0);

}

bad_life.c was compiled with the following parameters:

$ mpcc -g bad_life.c -o bad_life

and when it runs, you get the following results:

$ export MP_PROCS=4

$ export MP_LABELIO=yes

$ bad_life

 0:Task 0 complete.

 2:Task 2 complete.

ERROR: 0031-250 task 1: Segmentation fault

ERROR: 0031-250 task 3: Segmentation fault

ERROR: 0031-250 task 0: Terminated

ERROR: 0031-250 task 2: Terminated

As you can see, bad_life.c gets two segmentation faults which generate two core

files. If you list the current directory, you can see two core files; one for task 1 and

the other for task 3.

$ ls -lR core*

total 88

-rwxr-xr-x 1 hoov staff 8472 May 02 09:14 bad_life

-rw-r--r-- 1 hoov staff 928 May 02 09:13 bad_life.c

drwxr-xr-x 2 hoov staff 512 May 02 09:01 coredir.1

drwxr-xr-x 2 hoov staff 512 May 02 09:36 coredir.3

-rwxr-xr-x 1 hoov staff 8400 May 02 09:14 good_life

-rw-r--r-- 1 hoov staff 912 May 02 09:13 good_life.c

-rw-r--r-- 1 hoov staff 72 May 02 08:57 host.list

./coredir.1:

total 48

-rw-r--r-- 1 hoov staff 24427 May 02 09:36 core

./coredir.3:

total 48

-rw-r--r-- 1 hoov staff 24427 May 02 09:36 core

Run dbx on one of the core files to find the problem. You run dbx like this:

$ dbx bad_life coredir.1/core

Type ’help’ for help.

[using memory image in coredir.1/core]

reading symbolic information ...

Segmentation fault in . at 0xf014

0x0000f014 warning: Unable to access address 0xf014 from core

Now, let’s see where the program crashed and what its state was at that time. If

you issue the where command,

(dbx) where

Chapter 3. Diagnosing and correcting common problems 43

You can see the program stack:

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf014 from core

.() at 0xf014

lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298

process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a4bb88) at 0xd31d

58c0

_lapi_recv_callback(0x0, 0x20a4bb88, 0x2000) at 0xd31d6a10

udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd05b9294

_receive_processing(0x0) at 0xd31d41b0

_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4

_lapi_msgpoll_internal(0x0, 0x1, 0x2ff225e8, 0x0, 0x0) at 0xd31bb8f0

LAPI_Msgpoll(0x0, 0x1, 0x2ff225e8) at 0xd31bfc60

mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc6ce0

_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94

MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44

unnamed block $b2, line 36 in "bad_life.c"

main(argc = 1, argv = 0x2ff229bc), line 36 in "bad_life.c"

(dbx)

The output of the where command shows that bad_life.c failed at line 36, like this:

(dbx) func main

(dbx) list 36

 36 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

Look at line 36 of bad_life.c. The first guess is that one of the parameters being

passed into MPI_RECV is bad. Look at some of these parameters to see if you can

find the source of the error. For example:

(dbx) print recv_message

"recv_message" is not active

The receive buffer pointer has been initialized to NULL rather than the address of a

valid buffer. The sample programs include a solution called good_life.c.

Compiling bad_life.c with the -g compile flag gives all the debugging information

you need to view the entire program state and to print program variables. If you did

not compile the program with the -g flag, and if you turned optimization on (-O),

there is virtually no information to tell you what happened when the program

executed. If this is the case, you can still use dbx to look at only stack information,

which allows you to determine the function or subroutine that generated the core

dump.

Viewing the program state: If collecting core files is impractical, you can also try

catching the program at the segmentation fault. You do this by running the program

under the control of the debugger. The debugger gets control of the application at

the point of the segmentation fault, and this allows you to view your program state

at the point where the problem occurs.

The following example uses bad_life again, but uses pdbx instead of dbx. Load

bad_life under pdbx with the following command:

44 IBM PE for AIX 5L V4 R3.0: Introduction

|
|

> pdbx bad_life -procs 4 -hfile /u/voe3/>

pdbx Version 4, Release 1.1 -- Feb 5 2004 18:31:06

 0:Core file "

 0:" is not a valid core file (ignored)

 2:Core file "

 2:" is not a valid core file (ignored)

 1:Core file "

 1:" is not a valid core file (ignored)

 3:Core file "

 3:" is not a valid core file (ignored)

 0:reading symbolic information ...

 1:reading symbolic information ...

 1:[1] stopped in main at line 20 ($t1)

 1: 20 MPI_Init(&argc, &argv);

 3:reading symbolic information ...

 2:reading symbolic information ...

 0:[1] stopped in main at line 20 ($t1)

 0: 20 MPI_Init(&argc, &argv);

 3:[1] stopped in main at line 20 ($t1)

 3: 20 MPI_Init(&argc, &argv);

 2:[1] stopped in main at line 20 ($t1)

 2: 20 MPI_Init(&argc, &argv);

0031-504 Partition loaded ...

Next, let the program run to allow it to reach a segmentation fault.

pdbx(all) cont

 0:Task 0 complete.

 2:Task 2 complete.

 1:

 1:Segmentation fault in . at 0xf014 ($t1)

 1:0x0000f014 7ca01d2a stswx r5,r0,r3

 3:

 3:Segmentation fault in . at 0xf014 ($t1)

 3:0x0000f014 7ca01d2a stswx r5,r0,r3

Once you get segmentation faults, you can focus your attention on one of the tasks

that failed. Look at task 1:

pdbx(all) on 1

By using the pdbx where command, you can see where the problem originated in

the source code:

pdbx(1) where

 1:.() at 0xf014

 1:lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298

 1:process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a35b88) at

 0xd31d58c0

 1:_lapi_recv_callback(0x0, 0x20a35b88, 0x2000) at 0xd31d6a10

 1:udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd0aa3294

 1:_receive_processing(0x0) at 0xd31d41b0

 1:_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4

 1:_lapi_msgpoll_internal(0x0, 0x3e8, 0x2ff225b8, 0x0, 0x0) at 0xd31bb8f0

 1:LAPI_Msgpoll(0x0, 0x186a0, 0x2ff225b8) at 0xd31bfc60

 1:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc7048

 1:_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94

 1:MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44

 1:unnamed block $b2, line 36 in "bad_life.c"

 1:main(argc = 1, argv = 0x2ff2298c), line 36 in "bad_life.c"

Now, let's move up the stack to function main:

pdbx(1) func main

Next, list line 36, which is where the problem is located:

Chapter 3. Diagnosing and correcting common problems 45

pdbx(1) l 36

 1: 36 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

Print the value of recv_message:

pdbx(1) p recv_message

 1:"recv_message" is not active

The program passes a bad parameter to MPI_RECV.

Both the techniques help you find the location of the problem in your code. The

example used makes it look easy, but in many cases it will not be so simple.

However, knowing where the problem occurred is valuable information if you are

forced to debug the problem interactively.

On the lighter side...: One of the new features in POE is the ability to capture

more detailed information about a program when it abnormally terminates, while

also reducing the amount of space needed for it. POE has the ability to produce

Light Weight Core Files, as opposed to standard AIX core files. This greatly reduces

the size of the core files while greatly enhancing the information that is produced.

First, you need to tell POE to produce Light Weight Core Files, with the

-corefile_format flag or MP_COREFILE_FORMAT environment variable.

> bad_life -procs 4 -labelio yes -corefile_format lwcf <

 0:Task 0 complete.

 2:Task 2 complete.

ERROR: 0031-250 task 1: Segmentation fault

ERROR: 0031-250 task 0: Terminated

ERROR: 0031-250 task 2: Terminated

ERROR: 0031-250 task 3: Segmentation fault

You will notice the same program output, however, now when you look in the

coredir.1 and coredir.3 directories, you begin to see the difference.

> cd coredir.1

Now look in the directory.

> ls -lt

total 30768

-rw-r--r-- 1 voe3 usr 1269 Feb 19 13:40 lwcf

-rw-r--r-- 1 voe3 usr 15745755 Feb 19 13:16 core

You should notice two differences. First, there is a second file, named lwcf (or

whatever the file name specified by the -corefile_format option or

MP_COREFILE_FORMAT environment variable), in addition to the file named core.

The second difference is in the file sizes - the standard AIX core files are much

larger. Now look at what you have in the new file.

The new file is a text output file, that can be viewed with any text viewer or vi. It will

contain output produced by the Light Weight Core File facility, containing stack and

thread traces for the entire program. To keep it simple, use cat to view the file:

>cat lwcf

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.3

+++ID Node 1 Process 622736 Thread 1

***FAULT "SIGSEGV - Segmentation violation"

+++STACK

At location 0x0000f014 but procedure information unavailable.

lapi_recv_vec : 0x00000550

process_hdr_hndlr_contig : 0x00000274

46 IBM PE for AIX 5L V4 R3.0: Introduction

_lapi_recv_callback : 0x000003c4

udp_read_dgsp : 0x000000a0

_receive_processing : 0x00000058

_lapi_dispatcher : 0x00000150

_lapi_msgpoll_internal : 0x000004a4

LAPI_Msgpoll : 0x000001ac

mpci_recv : 0x00000f38

_mpi_recv : 0x0000015c

MPI__Recv : 0x00000630

main : 36 # in file <bad_life.c>

---STACK

---ID Node 1 Process 622736 Thread 1

+++ID Node 1 Process 622736 Thread 2

+++STACK

sigwait : 0x000002d0

pm_async_thread : 0x000006e8

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 2

+++ID Node 1 Process 622736 Thread 3

+++STACK

_intr_hndlr : 0x00000228

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 3

+++ID Node 1 Process 622736 Thread 4

+++STACK

_event_wait : 0x0000005c

_cond_wait_local : 0x0000034c

_cond_wait : 0x00000050

pthread_cond_wait : 0x000001d8

_compl_hndlr_thr : 0x00000174

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 4

---LCB

The output contains a lot of information for such a small file, a true case where less

is more. You can see where all of the threads were, and immediately know what

caused the problem and where it is.

For completeness, switch over to the coredir.3 directory, to see what happened

with the other task that terminated abnormally.

> cd ../coredir.3

> ls -lt

total 30768

-rw-r--r-- 1 voe3 usr 1269 Feb 19 13:40 lwcf

-rw-r--r-- 1 voe3 usr 15745915 Feb 19 13:16 core

Here you see the same thing, two files, one large standard AIX core file, and a

small Light Weight Core File. If you look at the lwcf file again, you will see pretty

much the same thing as before, except it will show things from task 3’s point of

view:

> cat lwcf

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.3

+++ID Node 3 Process 442600 Thread 1

***FAULT "SIGSEGV - Segmentation violation"

+++STACK

At location 0x0000f014 but procedure information unavailable.

Chapter 3. Diagnosing and correcting common problems 47

lapi_recv_vec : 0x00000550

process_hdr_hndlr_contig : 0x00000274

_lapi_recv_callback : 0x000003c4

udp_read_dgsp : 0x000000a0

_receive_processing : 0x00000058

_lapi_dispatcher : 0x00000150

_lapi_msgpoll_internal : 0x000004a4

LAPI_Msgpoll : 0x000001ac

mpci_recv : 0x00000f38

_mpi_recv : 0x0000015c

MPI__Recv : 0x00000630

main : 36 # in file <bad_life.c>

---STACK

---ID Node 3 Process 442600 Thread 1

+++ID Node 3 Process 442600 Thread 2

+++STACK

sigwait : 0x000002d0

pm_async_thread : 0x000006e8

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 2

+++ID Node 3 Process 442600 Thread 3

+++STACK

_intr_hndlr : 0x00000228

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 3

+++ID Node 3 Process 442600 Thread 4

+++STACK

_event_wait : 0x0000005c

_cond_wait_local : 0x0000034c

_cond_wait : 0x00000050

pthread_cond_wait : 0x000001d8

_compl_hndlr_thr : 0x00000174

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 4

---LCB

The Light Weight Core File option gives you a quick and efficient way of seeing

where things went bad, while saving some space along the way.

Core dumps and threaded programs: If a task of a threaded program produces

a core file, the partial dump produced by default does not contain the stack and

status information for all threads. Therefore, it has limited usefulness. You can

request AIX to produce a full core file, but such files are generally larger than

permitted by user limits (the communication subsystem alone generates more than

64 MB of core information). As a result, you consider two alternatives:

v Request that AIX generate a lightweight corefile. Lightweight corefiles contain

less detail than standard AIX corefiles and, therefore, consume less disk space,

CPU time, and network bandwidth. For more information about lightweight

corefiles, see IBM Parallel Environment: Operation and Use, Volume 1.

v Use the attach capability of dbx, xldb, or pdbx to examine the task while it is

still running.

48 IBM PE for AIX 5L V4 R3.0: Introduction

No output at all

Should there be output?

If you are not getting output from your program and you think you ought to be,

make sure you have enabled the program to send data back to you. If the

MP_STDOUTMODE environment variable is set to a number, it is the number of the

only task for which standard output will be displayed. If that task does not generate

standard output, you will not see any.

There should be output

If MP_STDOUTMODE is set appropriately, the next step is to verify that the

program is actually doing something. Start by observing how the program

terminates (or fails to terminate). It will do one of the following things:

v Terminate without generating output other than POE messages.

v Fail to terminate after a really long time, still without generating output.

In the first case, you should examine any messages you receive. Since your

program is not generating any output, all of the messages will be coming from POE.

In the second case, you will have to stop the program yourself (<Ctrl-c> should

work).

One possible reason for lack of output could be that your program is terminating

abnormally before it can generate any. POE will report abnormal termination

conditions such as being killed, as well as non-zero return codes. Sometimes these

messages are obscured in the blur of other errata, so it is important to check the

messages carefully.

Figuring out return codes: It is important to understand POE’s interpretation of

return codes. If the exit code for a task is zero(0) or in the range of 2 to 127, then

POE will make that task wait until all tasks have exited. If the exit code is 1 or

greater than 128 (or less than 0), then POE will terminate the entire parallel job

abruptly (with a SIGTERM signal to each task). In normal program execution, one

would expect to have each program go through exit(0) or STOP, and exit with an

exit code of 0. However, if a task encounters an error condition (for example, a full

file system), then it may exit unexpectedly. In these cases, the exit code is usually

set to -1. If, however, you have written error handlers which produce exit codes

other than 1 or -1, then POE’s termination algorithm may cause your program to

hang because one task has terminated abnormally, while the other tasks continue

processing (expecting the terminated task to participate).

If the POE messages indicate the job was killed (either because of some external

situation like low page space or because of POE’s interpretation of the return

codes), it may be enough information to fix the problem. Otherwise, you may have

to do more analysis.

The program hangs

If you have gotten this far and the POE messages, and the additional checking by

the message passing routines, have not shed any light on why your program is not

generating output, the next step is to figure out whether your program is doing

anything at all (besides not giving you output).

Let’s look at the following example...it has a bug in it.

Chapter 3. Diagnosing and correcting common problems 49

/**

*

* Ray trace program with bug

*

* To compile:

* mpcc -g -o rtrace_bug rtrace_bug.c

*

*

* Description:

* This is a sample program that partitions N tasks into

* two groups, a collect node and N - 1 compute nodes.

* The responsibility of the collect node is to collect the data

* generated by the compute nodes. The compute nodes send the

* results of their work to the collect node for collection.

*

* There is a bug in this code. Please do not fix it in this file!

*

**/

#include <mpi.h>

#define PIXEL_WIDTH 50

#define PIXEL_HEIGHT 50

int First_Line = 0;

int Last_Line = 0;

void main(int argc, char *argv[])

{

 int numtask;

 int taskid;

 /* Find out number of tasks/nodes. */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtask);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /* Task 0 is the coordinator and collects the processed pixels */

 /* All the other tasks process the pixels */

 if (taskid == 0)

 collect_pixels(taskid, numtask);

 else

 compute_pixels(taskid, numtask);

 printf("Task %d waiting to complete.\n", taskid);

 /* Wait for everybody to complete */

 MPI_Barrier(MPI_COMM_WORLD);

 printf("Task %d complete.\n",taskid);

 MPI_Finalize();

 exit();

}

/* In a real implementation, this routine would process the pixel */

/* in some manner and send back the processed pixel along with its*/

/* location. Since you did process the pixel. all you do is */

/* send back the location */

compute_pixels(int taskid, int numtask)

{

 int section;

 int row, col;

 int pixel_data[2];

 MPI_Status stat;

 printf("Compute #%d: checking in\n", taskid);

 section = PIXEL_HEIGHT / (numtask -1);

50 IBM PE for AIX 5L V4 R3.0: Introduction

First_Line = (taskid - 1) * section;

 Last_Line = taskid * section;

 for (row = First_Line; row < Last_Line; row ++)

 for (col = 0; col < PIXEL_WIDTH; col ++)

 {

 pixel_data[0] = row;

 pixel_data[1] = col;

 MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 printf("Compute #%d: done sending. ", taskid);

 return;

}

/* This routine collects the pixels. In a real implementation, */

/* after receiving the pixel data, the routine would look at the*/

/* location information that came back with the pixel and move */

/* the pixel into the appropriate place in the working buffer */

/* Since you aren’t doing anything with the pixel data, you don’t */

/* bother and each message overwrites the previous one */

collect_pixels(int taskid, int numtask)

{

 int pixel_data[2];

 MPI_Status stat;

 int mx = PIXEL_HEIGHT * PIXEL_WIDTH;

 printf("Control #%d: No. of nodes used is %d\n", taskid,numtask);

 printf("Control: expect to receive %d messages\n", mx);

 while (mx > 0)

 {

 MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,

 MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 mx--;

 }

 printf("Control node #%d: done receiving. ",taskid);

 return;

}

This example is from a ray tracing program that distributed a display buffer out to

server nodes. The intent is that each task, other than Task 0, takes an equal

number of full rows of the display buffer, processes the pixels in those rows, and

then sends the updated pixel values back to the client. In the real application, the

task would compute the new pixel value and send it as well, but in this example,

you are just sending the row and column of the pixel. Because the client is getting

the row and column location of each pixel in the message, it does not care which

server each pixel comes from. The client is Task 0, and the servers are all the other

tasks in the parallel job.

This example has a functional bug in it. With a little bit of analysis, the bug is

probably easy to spot, and you may be tempted to fix it right away. PLEASE DO

NOT!

When you run this program, you get the output shown below. Notice that the -g

option is used when you compile the example. You are cheating a little because you

know that there is going to be a problem, so you are compiling with debug

information that is turned on right away.

$ mpcc -g -o rtrace_bug rtrace_bug.c

$ rtrace_bug -procs 4 -labelio yes

 1:Compute #1: checking in

 0:Control #0: No. of nodes used is 4

 1:Compute #1: done sending. Task 1 waiting to complete.

 2:Compute #2: checking in

Chapter 3. Diagnosing and correcting common problems 51

3:Compute #3: checking in

 0:Control: expect to receive 2500 messages

 2:Compute #2: done sending. Task 2 waiting to complete.

 3:Compute #3: done sending. Task 3 waiting to complete.

^C

ERROR: 0031-250 task 1: Interrupt

ERROR: 0031-250 task 2: Interrupt

ERROR: 0031-250 task 3: Interrupt

ERROR: 0031-250 task 0: Interrupt

No matter how long you wait, the program will not terminate until you press

<Ctrl-c>.

So, you suspect the program is hanging somewhere. You know it starts executing

because you get some messages from it. It could be a logical hang or it could be a

communication hang.

Hangs and threaded programs

Coordinating the threads in a task requires careful locking and signaling. Deadlocks

that occur because the program is waiting on locks that have not been released are

common, in addition to the deadlock possibilities that arise from improper use of the

MPI message passing calls.

Attach the debugger

Now that you have come to the conclusion that the program is hanging, use the

debugger to find out why. The best way to diagnose this problem is to attach the

debugger directly to the POE job.

Start up POE and run rtrace_bug:

$ rtrace_bug -procs 4 -labelio yes

To attach the debugger, you first need to get the process ID (PID) of the POE job,

uusing the AIX ps command:

> ps -ef | grep poe

 voe3 680044 344226 0 09:52:33 pts/1 0:00 poe

Next, you need to start the pdbx debugger in attach mode by using the -a flag and

the process ID (PID) of the POE job:

$ pdbx -a 680044

After starting the debugger in attach mode, a pdbx Attach screen appears.

> pdbx -a 680044

pdbx Version 4, Release 1.1 -- Feb 5 2004 18:31:06

To begin debugging in attach mode, select a task or tasks to attach.

Task IP Addr Node PID Program

0 89.117.133.62 k133rp03.kgn.ibm.com 692328 rtrace_bug

1 89.117.133.62 k133rp03.kgn.ibm.com 553010 rtrace_bug

2 89.117.133.62 k133rp03.kgn.ibm.com 684222 rtrace_bug

3 89.117.133.62 k133rp03.kgn.ibm.com 594022 rtrace_bug

At the pdbx prompt enter the attach command followed by a list of tasks or all. For

example, attach 2 4 5-7 or attach all. You may also type help for more information

or quit to exit the debugger without attaching.

52 IBM PE for AIX 5L V4 R3.0: Introduction

The pdbx Attach screen contains a list of tasks from which you can choose, and for

each task, the following information:

v Task — the task number

v IP — the IP address of the node on which the task or application is running

v Node — the name of the node on which the task or application is running

v PID — the process identifier of the task or application

v Program — the name of the application and arguments, if any

The paging tool used to display the menu will default to pg –e unless the PAGER

environment variable specifies another pager. the debugger displays a list of task

numbers that comprise the parallel job. The debugger obtains this information by

reading a configuration file created by POE when it begins a job step.

After initiating attach mode, select the tasks to which you want to attach. Since you

do not know which task or set of tasks is causing the problem, attach to all of the

tasks by typing attach all:

pdbx(none) attach all

 0:Waiting to attach to process 692328 ...

 0:Successfully attached to rtrace_bug.

 1:Waiting to attach to process 553010 ...

 1:Successfully attached to rtrace_bug.

 2:Waiting to attach to process 684222 ...

 2:Successfully attached to rtrace_bug.

 3:Waiting to attach to process 594022 ...

 3:Successfully attached to rtrace_bug.

 0:reading symbolic information ...

 0:stopped in _event_sleep at 0xd00575d0 ($t2)

 0:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 1:reading symbolic information ...

 1:stopped in _event_sleep at 0xd00575d0 ($t2)

 1:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 3:reading symbolic information ...

 3:stopped in _event_sleep at 0xd00575d0 ($t2)

 3:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 2:reading symbolic information ...

 2:stopped in _event_sleep at 0xd00575d0 ($t2)

 2:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

0029-2013 Debugger attached and ready.

The debugger attaches to the specified tasks. The selected executables are

stopped wherever their program counters happen to be, and are then under the

control of the debugger. pdbx displays information about the attached tasks using

the task numbering of the original POE application partition.

Let’s start by taking a look at task 0. First, change the current context to task 0 by

typing 0. Even though the program is not actually threaded, it is using threads

created by the MPI library. To see the threads that are active, use the threads

command:

pdbx(attached) on 0

pdbx(0) threads

 0: thread state-k wchan state-u k-tid mode held scope function

 0: $t1 run running 2359441 k no sys $PTRGL

 0:>$t2 run blocked 3301487 k no sys _event_sleep

 0: $t3 wait running 2805923 k no sys select

 0: $t4 wait 0xf10000879001d940 blocked 1937553 k no sys _event_sleep

 0: $t5 zomb terminated 3506425 k no sys pthread_exit

An aspect to be aware of when attempting to debug a program using threads is that

when a program is stopped, it can be stopped in any of the running threads. In this

Chapter 3. Diagnosing and correcting common problems 53

example, by looking at the list of threads, the current thread you stopped in is

shown with the > sign next to it (in this case, it is thread 2). Knowing that the

program is single threaded, you need to switch to the current thread in the program,

which is thread 1, using the thread current 1 command:

pdbx(0) thread current 1

 0:warning: Thread is in kernel mode, not all registers can be accessed.

To see where you are in task 0, type where:

pdbx(0) where

 0:@ptrgl.$PTRGL() at 0xd01d0f88

 0:@raise.nsleep(??, ??) at 0xd01dedfc

 0:@raise.nsleep(??, ??) at 0xd01dedfc

 0:usleep(??) at 0xd01dea48

 0:mpci_recv_gen(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a8bb90

 0:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c6cc

 0:_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd225de94

 0:MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd225ad44

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

 0:main(argc = 1, argv = 0x2ff229bc), line 43 in "rtrace_bug.c"

Since the code is hung in low level routines, take a look at the highest line in the

stack trace that has a line number and a file name associated with it. This indicates

that source code association is available. In this case, it is the line that contains

collect_pixels, which is 8 lines up from the entry containing read. To look more

closely at the collect_pixels routine, type up 8:

pdbx(0) up 8

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

Now, you can list the source code starting at the calling routine in collect_pixels:

pdbx(0) list

 0: 101 MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,

 0: 102 MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 0: 103 mx--;

 0: 104 }

 0: 105 printf("Control node #%d: done receiving. ",taskid);

 0: 106 return;

 0: 107 }

 0: 108

Now you can see that task 0 is stopped on a MPI_RECV call. To look at the local

data values, type dump:

pdbx(0) dump

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

 0:stat = (source = 2, tag = 0, error = -804052736, val1 = 8, val2 = 0, val3 = 800,

 val4 = 2, val5 = -559038737)

 0:mx = 100

 0:__func__ = "collect_pixels"

 0:pixel_data = (31, 49)

When you look at the Local Data Values, you find that variable mx is still set to

100, so task 0 thinks it is still going to receive 100 messages. Now take a look at

what the other messages are doing. To get the stack information on task 1, switch

to that task (subcommand on 1), then go the current running thread (thread 1,

subcommand thread current 1):

pdbx(0) on 1

pdbx(1) thread current 1

 1:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(1) where

 1:@ptrgl.$PTRGL() at 0xd01d0f88

54 IBM PE for AIX 5L V4 R3.0: Introduction

1:@raise.nsleep(??, ??) at 0xd01dedfc

 1:@raise.nsleep(??, ??) at 0xd01dedfc

 1:usleep(??) at 0xd01dea48

 1:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 1:barrier_shft_b(??) at 0xd2270438

 1:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 1:MPI__Barrier(??) at 0xd226e678

 1:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

Task 1 has reached an MPI_BARRIER call. If you quickly check the other tasks,

you see that they have all reached this point as well.

pdbx(1) on 2

pdbx(2) thread current 1

 2:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(2) where

 2:@ptrgl.$PTRGL() at 0xd01d0f88

 2:@raise.nsleep(??, ??) at 0xd01dedfc

 2:@raise.nsleep(??, ??) at 0xd01dedfc

 2:usleep(??) at 0xd01dea48

 2:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 2:barrier_shft_b(??) at 0xd2270438

 2:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 2:MPI__Barrier(??) at 0xd226e678

 2:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

pdbx(2) on 3

pdbx(3) thread current 1

pdbx(3) where

 3:_p_nsleep(??, ??) at 0xd005b7f4

 3:@raise.nsleep(??, ??) at 0xd01dedfc

 3:usleep(??) at 0xd01dea48

 3:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 3:barrier_shft_b(??) at 0xd2270438

 3:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 3:MPI__Barrier(??) at 0xd226e678

 3:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

Problem solved. Tasks 1 through 3 have completed sending messages, but task 0

still expects to receive more. Task 0 was expecting 2500 messages but only

received 2400, so it is still waiting for 100 messages. To see how many messages

each of the other tasks are sending, look at the global variables First_Line and

Last_Line.

You can get the values of First_Line and Last_Line for all of the tasks by first

changing the context to attached by issuing subcommand on attached and then

issuing subcommand print:

pdbx(1) on attached

pdbx(attached) thread current 1

 0:warning: Thread is in kernel mode, not all registers can be accessed.

 1:warning: Thread is in kernel mode, not all registers can be accessed.

 2:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(attached) print First_Line

 0:0

 1:0

 2:16

 3:32

pdbx(attached) print Last_Line

Chapter 3. Diagnosing and correcting common problems 55

0:0

 1:16

 2:32

 3:48

As you can see:

v Task 1 is processing lines 0 through 16

v Task 2 is processing lines 16 through 32

v Task 3 is processing lines 32 through 48

So, what happened to lines 48 and 49? Since each row is 50 pixels wide, and you

are missing 2 rows, that explains the 100 missing messages. The division of the

total number of lines by the number of tasks is not integral, so you lose part of the

result when it is converted back to an integer. Where each task is supposed to be

processing 16 and two-thirds lines, it is only handling 16.

Fix the problem

To fix this problem permanently, you can proceed in one of the following ways:

v Have the last task always go to the last row as you did in the debugger.

v Have the program refuse to run unless the number of tasks are evenly divisible

by the number of pixels (a rather harsh solution).

v Have tasks process the complete row when they have responsibility for half or

more of a row.

Since Task 1 was responsible for 16 and two thirds rows, it would process rows 0

through 16. Task 2 would process rows 17 through 33, and Task 3 would process

rows 34 through 49. The way to solve it is by creating blocks, with as many rows as

there are servers. Each server is responsible for one row in each block (the offset

of the row in the block is determined by the server’s task number). The fixed code

is shown in the following example. Note that this is only part of the program.

/**

*

* Ray trace program with bug corrected

*

* To compile:

* mpcc -g -o rtrace_good rtrace_good.c

*

*

* Description:

* This is part of a sample program that partitions N tasks into

* two groups, a collect node and N - 1 compute nodes.

* The responsibility of the collect node is to collect the data

* generated by the compute nodes. The compute nodes send the

* results of their work to the collect node for collection.

*

* The bug in the original code was due to the fact that each processing

* task determined the rows to cover by dividing the total number of

* rows by the number of processing tasks. If that division was not

* integral, the number of pixels processed was less than the number of

* pixels expected by the collection task and that task waited

* indefinitely for more input.

*

* The solution is to allocate the pixels among the processing tasks

* in such a manner as to ensure that all pixels are processed.

*

**/

compute_pixels(int taskid, int numtask)

{

 int offset;

56 IBM PE for AIX 5L V4 R3.0: Introduction

int row, col;

 int pixel_data[2];

 MPI_Status stat;

 printf("Compute #%d: checking in\n", taskid);

 First_Line = (taskid - 1);

 /* First n-1 rows are assigned */

 /* to processing tasks */

 offset = numtask - 1;

 /* Each task skips over rows */

 /* processed by other tasks */

 /* Go through entire pixel buffer, jumping ahead by numtask-1 each time */

for (row = First_Line; row < PIXEL_HEIGHT; row += offset)

 for (col = 0; col < PIXEL_WIDTH; col ++)

 {

 pixel_data[0] = row;

 pixel_data[1] = col;

 MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 printf("Compute #%d: done sending. ", taskid);

 return;

}

This program is the same as the original one except for the loop in

compute_pixels. Now, each task starts at a row determined by its task number and

jumps to the next block on each iteration of the loop. The loop is terminated when

the task jumps past the last row (which will be at different points when the number

of rows is not evenly divisible by the number of servers).

Why did the program hang?

The symptom of the problem in the rtrace_bug program was a hang. Hangs can

occur for the same reasons they occur in serial programs (in other words, loops

without exit conditions). They may also occur because of message passing

deadlocks or because of some subtle differences between the parallel and

sequential environments.

Using the debugger to analyze sometimes indicates that the source of a hang is a

message that was never received, even though it is a valid one, and even though it

appears to have been sent. In these situations, the problem is probably due to lost

messages in the communication subsystem. This is especially true if the lost

message is intermittent or varies from run to run. This is either the program’s fault

or the environment’s fault. Before investigating the environment, you should analyze

the program’s safety with respect to MPI. A safe MPI program is one that does not

depend on a particular implementation of MPI. You should also examine the error

logs for evidence of repeated message transmissions (which usually indicate a

network failure).

Although MPI specifies many details about the interface and behavior of

communication calls, it also leaves many implementation details unspecified (and it

does not just omit them, it specifies that they are unspecified.) This means that

certain uses of MPI may work correctly in one implementation and fail in another,

particularly in the area of how messages are buffered. An application may even

work with one set of data and fail with another in the same implementation of MPI.

This is because, when the program works, it has stayed within the limits of the

implementation. When it fails, it has exceeded the limits. Because the limits are

unspecified by MPI, both implementations are valid. MPI safety is discussed further

in Chapter 5, “Creating a safe program,” on page 93.

Chapter 3. Diagnosing and correcting common problems 57

Once you have verified that the application is MPI-safe, your only recourse is to

blame lost messages on the environment. If the communication path is IP, use the

standard network analysis tools to diagnose the problem. Look particularly at mbuf

usage. You can examine mbuf usage with the netstat command. Note that the

netstat command is not a distributed command, which means that it applies only to

the node on which you execute it.

$ netstat -m

If the mbuf line shows any failed allocations, you should increase the thewall value

of your network options. You can see your current setting with the no command.

Note that the no command is not a distributed command which means that it

applies only to the node on which you execute it.

$ no -a

The value presented for thewall is in KBytes. You can use the no command to

change this value. You will have to have root access to do this. For example,

$ no -o thewall=16384

sets thewall to 16 MBytes.

Message passing between lots of remote hosts can tax the underlying IP system.

Make sure that you look at all the remote nodes, not just the home node. Allow lots

of buffers. If the communication path is user space (US), you will need to get your

system support people involved to isolate the problem.

Other reasons for the program to hang

One final cause for no output is a problem on the home node (POE is hung).

Normally, a hang is associated with the remote hosts waiting for each other, or for a

termination signal. POE running on the home node is alive and well, waiting

patiently for some action on the remote hosts. If you type <Ctrl-c> on the POE

console, you will be able to successfully interrupt and terminate the set of remote

hosts. See IBM Parallel Environment: Operation and Use, Volume 1 for information

on the poekill command.

There are situations where POE itself can hang. Usually these situations are

associated with large volumes of input or output. Remember that POE normally

gets standard output from each node. If each task writes a large amount of data to

standard output, it may chew up the IP buffers on the machine running POE,

causing it (and all the other processes on that machine) to block and hang. The

only way to know that this is the problem is by seeing that the rest of the home

node has hung. If you think that POE is hung on the home node, your only solution

may be to kill POE there. Press <Ctrl-c> several times, or use the command kill -9.

At present, there are only partial approaches to avoiding the problem. You can

allocate lots of mbufs on the home node, and do not make the send and receive

buffers too large.

Bad output

Bad output includes unexpected error messages. After all, who expects error

messages or bad results (results that are not correct)?

Error messages

You can track down the causes of error messages and correct them in parallel

programs using techniques similar to those used for serial programs. One

difference, however, is that you need to identify which task is producing the

message, if it is not coming from all tasks. You can do this by setting the

58 IBM PE for AIX 5L V4 R3.0: Introduction

MP_LABELIO environment variable to yes, or using the -labelio yes command line

parameter. Generally, the message will give you enough information to identify the

location of the problem.

You may also want to generate more error and warning messages by setting the

MP_EUIDEVELOP environment variable to yes when you first start running a new

parallel application. This will give you more information about the things that the

message passing library considers errors or unsafe practices.

Bad results

You can track down bad results and correct them in a parallel program in a fashion

similar to that used for serial programs. The process in the previous debugging

exercise can be more complicated because the processing and control flow on one

task may be affected by other tasks. In a serial program, you can follow the exact

sequence of instructions that were executed and observe the values of all variables

that affect the control flow. However, in a parallel program, both the control flow and

the data processing on a task may be affected by messages sent from other tasks.

For one thing, you may not have been watching those other tasks. For another, the

messages could have been sent a long time ago. Therefore, it is very difficult to

correlate a message that you receive with a particular series of events.

Debugging and threads

So far, the discussion has been about debugging normal old serial or parallel

programs, but you may want to debug a threaded program (or be aware of the

threads used in the library). If this is the case, there are a few things you should

consider.

Before you do anything else, you first need to understand the environment in which

you are working. You have the potential to create a multithreaded application, using

a multithreaded library, that consists of multiple distributed tasks. As a result, finding

and diagnosing bugs in this environment may require a different set of debugging

techniques that you are not used to using. Here are some things to remember.

When you attach to a running program, all the tasks you selected in your program

will be stopped at their current points of execution. Typically, you want to see the

current point of execution of your task. This stop point is the position of the program

counter, and may be in any one of the many threads that your program may create

OR any one of the threads that the MPI library creates. With non-threaded

programs, it was adequate to just travel up the program stack until you reached

your application code (assuming you compiled your program with the -g option). But

with threaded programs, you now need to traverse across other threads to get to

your thread(s) and then up the program stack to view the current point of execution

of your code.

The MPI library itself will create a set of threads to process message requests.

When you attach to a program that uses the MPI library, all of the threads

associated with the POE job are stopped, including the ones created and used by

MPI.

For more information on the threaded MPI library, see IBM Parallel Environment:

MPI Programming Guide.

Chapter 3. Diagnosing and correcting common problems 59

60 IBM PE for AIX 5L V4 R3.0: Introduction

Chapter 4. Is the program efficient?

So far, the discussions have been about getting PE working, creating message

passing parallel programs, debugging problems, and debugging parallel

applications. When you get a parallel program running so that it gives us the correct

answer, you are done. Not necessarily. In this area, parallel programs are just like

sequential programs; just because they give you the correct answer does not mean

they are doing it in the most efficient manner. For a program that is relatively short

running or is run infrequently, it may not matter how efficient it is. For a program

that consumes a significant portion of the system resources, you need to make the

best use of those resources by tuning its performance.

Tuning the performance of a parallel application

There are two approaches to tuning the performance of a parallel application.

v You can tune a sequential program and then parallelize it.

With this approach, the process is the same as for any sequential program, and

you use the same tools; prof, gprof, and tprof. In this case, the parallelization

process must take performance into account, and should avoid anything that

adversely affects it.

v You can parallelize a sequential program and then tune the result. With this

approach, the individual parallel tasks are optimized together, taking both

algorithm and parallel performance into account simultaneously.

Both of these techniques yield comparable results. The difference is in the tools that

are used in each of the approaches, and how they are used.

Note: It may not be possible to use some tools in a parallel environment in the

same way that they are used in a sequential environment. This may be

because the tool requires root authority and POE restricts the root ID from

running parallel jobs. Or, it may be because, when the tool is run in parallel,

each task attempts to write into the same files, thus corrupting the data.

tprof is an example of a tool that falls into both of these categories.

With either approach, you use the standard sequential tools in the traditional

manner. When you tune an application and then parallelize it, observe the

communication performance, how it affects the performance of each of the

individual tasks, and how the tasks affect each other. For example, does one task

spend a lot of time waiting for messages from another? If so, perhaps you need to

rebalance the workload. Or if a task starts waiting for a message long before it

arrives, perhaps it could do more algorithmic processing before waiting for the

message. When an application is made parallel and then tuned, you need a way to

collect the performance data in a manner that includes both communication and

algorithmic information. That way, if the performance of a task needs to be

improved, you can decide between tuning the algorithm or tuning the

communication.

This discussion does not deal with standard algorithmic tuning techniques. Rather,

the discussion is about some of the ways PE can help you tune the parallel nature

of the application, regardless of the approach you take.

© Copyright IBM Corp. 1993, 2006 61

|
|
|

How much communication is enough?

A significant factor that affects the performance of a parallel application is the

balance between communication and workload. In some cases, the workload is

unevenly distributed or is duplicated across multiple tasks. Ideally, you would like

perfect balance among the tasks, but doing so may require additional

communication that actually makes the performance worse. Sometimes it is better

to have all the tasks do the same thing rather than have one do it and try to send

the results to the rest.

An example of where the decision is not so clear cut is the matrix inversion

program in Chapter 2, “Message passing,” on page 21. There you saw how to start

making the sequential program into a parallel one by distributing the element

calculation once the determinant was found. That start is actually a poor one. Part

of the program is shown below.

/***

*

* Matrix Inversion Program - First parallel implementation

*

* To compile:

* mpcc -g -o inverse_parallel inverse_parallel.c

*

***/

 {

/* There are only 2 unused rows/columns left */

/* Find the second unused row */

for(row2=row1+1;row2<size;row2++)

 {

 for(k=0;k<depth;k++)

 {

 if(row2==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

assert(row2<size);

/* Find the first unused column */

for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col1<size);

/* Find the second unused column */

for(col2=col1+1;col2<size;col2++)

 {

 for(k=0;k<depth;k++)

 {

 if(col2==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col2<size);

/* Determinant = m11*m22-m12*m21 */

return matrix[row1][col1]*matrix[row2][col2]-matrix

62 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[row1][col2]*matrix[row2][col1];

 }

 /* There are more than 2 rows/columns in the matrix being processed */

 /* Compute the determinant as the sum of the product of each element */

 /* in the first row and the determinant of the matrix with its row */

 /* and column removed */

 total = 0;

 used_rows[depth] = row1;

 for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k<depth) /* This column is used -- skip it*/

 continue;

 used_cols[depth] = col1;

 total += sign*matrix[row1][col1]*determinant(matrix,size,used_rows,

 used_cols,depth+1);

 sign=(sign==1)?-1:1;

 }

 return total;

 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)

{

 int i,j;

 for(i=0;i<rows;i++)

 {

 for(j=0;j<cols;j++)

 {

 fprintf(fptr,"%10.4f ",mat[i][j]);

 }

 fprintf(fptr,"\n");

 }

}

float coefficient(float **matrix,int size, int row, int col)

{

 float coef;

 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));

 uc = malloc(size*sizeof(matrix));

 ur[0]=row;

 uc[0]=col;

 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);

 return coef;

}

The suspicion is there is a problem, and that it is not a communication bottleneck,

but rather a computation problem. To illustrate this, compile the parallel matrix

inversion program, inverse_parallel.c, with the -pg flag. Next, run gprof on the

monitor files for tasks 0-7 (task 8 just collects the results so its performance is not

a concern).

 $ mpcc -g -pg -o inverse_parallel inverse_parallel.c

 $ inverse_parallel -procs 9

 $ gprof inverse_parallel gmon.out.[0-7] > gprof.out

You want to look in the output file (pick your favorite viewer, such as vi), and to get

to the part we are really interested in, search for cumulative. In this case gprof

Chapter 4. Is the program efficient? 63

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

produces a lot of output, so we will be skipping over a lot of it, and focusing on just

a portion of what you will really see. What you are interested in is:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

 38.5 2.22 2.22 ._lapi_shm_dispatcher [1]

 26.3 3.74 1.52 72 21.11 21.11 .determinant [2]

 16.3 4.68 0.94 ._lapi_dispatcher [6]

 5.7 5.01 0.33 ._is_yield_queue_empty [7]

 5.0 5.30 0.29 .LAPI__Msgpoll [8]

 2.9 5.47 0.17 .__divu64 [9]

 0.9 5.52 0.05 .__mcount [10]

 0.7 5.56 0.04 ._lapi_shm_setup [11]

 0.5 5.59 0.03 .time_base_to_time [12]

 0.3 5.61 0.02 .__mcount [13]

 0.3 5.63 0.02 .read_real_time [15]

 0.2 5.64 0.01 216 0.05 0.05 .std::_LFS_ON::locale::id::

 id(unsigned long) [16]

 0.2 5.65 0.01 32 0.31 0.31 ._alloc_pthread [17]

 0.2 5.66 0.01 24 0.42 0.42 .pthread_exit [32]

You see that you spend a lot of time in determinant, first to compute the

determinant for the entire matrix and then in computing the determinant as part of

computing the element values. That seems like a good place to start optimizing.

This algorithm computes the determinant of a matrix by using the determinants of

the submatrices formed by eliminating the first row and a column from the matrix.

The result of this recursion is that, eventually, the algorithm computes the

determinants of all the 2 by 2 matrixes formed from the last two rows and each

combination of columns. This is not so bad, but the same 2 by 2 matrix formed in

this manner is computed n-2 times (once for each column except the 2 from which

it is formed) each time a determinant is computed and there are n*(n-1)/2 such

matrixes. If the 2 by 2 matrix determinants can be captured and reused, it would

provide some improvements.

Not only is this a good approach for optimizing a sequential program, but

parallelism capitalizes on this approach as well. Because the 2 by 2 determinants

are independent, they can be computed in parallel and distributed among the tasks.

Each task can take one of the columns and compute the determinants for all the

matrixes formed by that column and subsequent columns. Then the determinants

can be distributed among all the tasks and used to compute the inverse elements.

The following example shows only the important parts of the program.

Here is the call to partial determinant:

/**

*

* Matrix Inversion Program - First optimized parallel version

*

* To compile:

* mpcc -g -o inverse_parallel_fast inverse_parallel_fast.c

*

**/

 /* Compute determinant of last two rows */

 pd = partial_determinant(matrix,rows);

 /* Everyone computes the determinant (to avoid message transmission) */

 determ=determinant(matrix,rows,used_rows,used_cols,0,pd);

And here is the partial determinant call:

64 IBM PE for AIX 5L V4 R3.0: Introduction

/* Compute the determinants of all 2x2 matrixes created by combinations */

/* of columns of the bottom 2 rows */

/* partial_determinant[i] points to the first determinant of all the 2x2*/

/* matrixes formed by combinations with column i. There are n-i-1 */

/* such matrixes (duplicates are eliminated) */

float **partial_determinant(float **matrix,int size)

{

 int col1, col2, row1=(size-2), row2=(size-1);

 int i,j,k;

 int terms=0;

 float **partial_det, /* pointers into the 2x2 determinants*/

 /* by column */

 buffer, / the 2x2 determinants */

 my_row; / the determinants computed by this */

 /* task */

 int * recv_counts, * recv_displacements; /* the size and offsets for the */

 /* determinants to be received from*/

 /* the other tasks */

 terms = (size-1)*(size)/2; /* number of combinations of columns */

 /* Allocate work areas for partial determinants and message passing, */

 partial_det = (float **) malloc((size-1)*sizeof(*partial_det));

 buffer = (float *) malloc(terms*sizeof(buffer));

 my_row = (float *) malloc((size-me-1)*sizeof(my_row));

 recv_counts = (int *) malloc(tasks*sizeof(*recv_counts));

 recv_displacements = (int *) malloc(tasks*sizeof(*recv_displacements));

 /* the tasks after the column size - 2 don’t have to do anything */

 for(i=tasks-1;i>size-2;i--)

 {

 recv_counts[i]=0;

 recv_displacements[i]=terms;

 }

 /* all the other tasks compute the determinants for combinations */

 /* with its column */

 terms--;

 for(i=size-2;i>=0;i--)

 {

 partial_det[i]=&(buffer[terms]);

 recv_displacements[i]=terms;

 recv_counts[i]=size-i-1;

 terms-=(size-i);

 }

 for(j=0;j<(size-me-1);j++)

 {

 my_row[j]=matrix[row1][me]*matrix[row2][me+j+1]

 -matrix[row1][me+j+1]*matrix[row2][me];

 }

 /* Now everybody sends their columns determinants to everybody else */

 /* Even the tasks that did not compute determinants will get the */

 /* results from everyone else (doesn’t sound fair, does it?) */

 MPI_Allgatherv(my_row,

 ((size-me-1)>0)?(size-me-1):0,

 MPI_REAL,

 buffernts,

 recv_displacements,

 MPI_REAL,MPI_COMM_WORLD);

 /* Free up the work area and return the array of pointers into the */

 /* determinants */

 free(my_row);

 return partial_det;

}

Chapter 4. Is the program efficient? 65

The question is whether the cost of the additional communication offsets the

advantage of computing the 2 by 2 determinants in parallel. In this example, it may

not be because the small message sizes (the largest is three times the size of a

float). As the matrix size increases, the cost of computing the 2 by 2 determinants

will increase with the square of n (the size of the matrix) but the cost of computing

the determinants in parallel will increase with n (each additional dimension

increases the work of each parallel task by only one additional 2 by 2 matrix) so,

eventually, the parallel benefit will offset the communication cost.

Tuning the performance of threaded programs

There are some things you need to consider when you want to get the maximum

performance out of the program.

Note: The PE implementation of MPI (PE MPI) is threadsafe.

v Two environment variables affect the overhead of an MPI call in the threaded

library:

– MP_SINGLE_THREAD=[no|yes]

– MP_EUIDEVELOP=[no|yes|deb|min]

For a program that has only one MPI communication thread, you can set the

environment variable MP_SINGLE_THREAD to yes before running. This will avoid

some locking which is otherwise required to maintain consistent internal MPI state.

The program may have other threads that do computation or other work, as long as

they do not make MPI calls. Note that the implementation of MPI I/O and MPI

one-sided communication is thread-based, and that these facilities may not be used

when MP_SINGLE_THREAD is set to yes. Set MP_SINGLE_THREAD to yes only

if you are certain the application has only one thread making MPI calls. If there are

two or more threads calling MPI, you will not get any warning from MPI and will

experience race conditions that lead to unpredictable errors. Applications that pass

large numbers of tiny messages may see measurable performance gains from

setting MP_SINGLE_THREAD to yes. Most applications will see no measurable

improvement.

The MP_EUIDEVELOP environment variable lets you control how much checking is

done when you run the program. Eliminating checking altogether (setting

MP_EUIDEVELOP to min) provides performance (latency) benefits, but may cause

critical information to be unavailable if the executable hangs due to message

passing errors. For more information on MP_EUIDEVELOP and other POE

environment variables, see IBM Parallel Environment: Operation and Use, Volume

1.

v Programs (threaded or non-threaded) that use the threaded MPI library can be

profiled by using the -pg flag on the compilation and linking step of the program.

The profile results (gmon.out) will contain only a summary of the information from

all the threads per task together. Viewing the data using gprof or Xprofiler is

limited to showing only this summarized data on a per task basis, not per thread.

Note: AIX supports thread profiling. There are changes to the format, content,

and naming of the profiling output files produced by prof and gprof. For

additional details, see IBM Parallel Environment for AIX: Operation and

Use, Volume 2.

For more information on profiling, see AIX 5L Version 5.3: Performance Tools Guide

and Reference.

66 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|
|
|
|
|
|
|
|
|
|

Why is this so slow?

You have a serial program and you want it to execute faster. In this situation, it is

best not to jump into parallelizing the program right away. Instead, you start by

tuning the serial algorithm.

The program in this next example approximates the two-dimensional Laplace

equation and uses a 4-point stencil.

The algorithm is very straightforward. For each array element, you will assign that

element the average of the four elements that are adjacent to it (except the rows

and columns that represent the boundary conditions of the problem).

You may find it helpful to refer to In Search of Clusters by Gregory F. Pfister for

more information on this problem and how to parallelize it.

The 4-point stencil program is central to this entire discussion, so you may want to

spend some time to understand how it works.

The first step is to compile the serial program. However, before you do this, be sure

you have a copy of stencil.dat in the program directory, or run the init program to

generate one. Once you have done this, you can compile the serial program with

the xlf command:

$ xlf -O2 naive.f -o naive

Next, you need to run the program and collect some information to see how it

performs. You can use the UNIX time command to do this:

$ time naive

Table 2 shows the result:

 Table 2. Results of program 'naive'

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11 min. 1.94 sec. 1000 by 1000

The execution time appearing in Table 2 was obtained with an earlier version of PE

MPI on an IBM eServer clustered 1600 server. The execution times may be

different, depending on the system that you are using, but the concepts for

improving an application to reduce execution time are unchanged.

Looking at these results, there is room for improvement, especially if you scale the

problem to a much larger array. So, how can you improve the performance?

Profile it

The first step in tuning the program is to find the areas within the program that

execute most of the work. Locating these compute-intensive areas within the

program lets you focus on the areas that give you the most benefit from tuning. The

best way to find them is to profile the program.

Profile the program using Xprofiler

When you profile your program, you need to compile it with the -pg flag to generate

profiling data. Note that the -O2 flag is a capital letter O followed by the number 2:

$ xlf -pg -O2 naive.f -o naive

Chapter 4. Is the program efficient? 67

|
|

|
|
|
|

The -pg flag compiles and links the executable so that when you run the program,

the performance data gets written to output.

Now that you have compiled your program with the -pg flag, run it again to see

what you get:

$ naive

This generates a file called gmon.out in the current working directory. you can look

at the contents of gmon.out with the Xprofiler profiling tool. This tool is part of the

AIX operating system. For more information about Xprofiler, see AIX 5L Version 5.3:

Performance Tools Guide and Reference.

AIX supports thread profiling and, in doing so, has changed the format and name of

the profiling output files. For more information on the default profiling output file

names, see IBM Parallel Environment for AIX: Operation and Use, Volume 2.

To start Xprofiler, you will use the xprofiler command, like, this:

$ xprofiler naive gmon.out

The Xprofiler main window appears, and in this window you will see the function

call tree. The function call tree is a graphical representation of the functions within

the application and their interrelationships. Each function is represented by a green,

solid-filled box called a function box. In simple terms, the larger this box, the greater

percentage of the total running time it consumes. So, the largest box represents the

function doing the most work. The calls between functions are represented by blue

arrows drawn between them call arcs. The arrowhead of the call arc points to the

function that is being called. The function boxes and call arcs that belong to each

library in the application appear within a fenced-in area called a cluster box. For the

purposes of this discussion, you will remove the cluster boxes from the display.

PLACE

the mouse cursor over the Filter menu.

CLICK

the left mouse button

 The Filter menu appears.

SELECT

the Hide All Library Calls option.

 The library calls disappear from the function call tree.

PLACE

the mouse cursor over the Filter menu.

CLICK

the left mouse button.

 The Filter menu appears.

SELECT

the Uncluster Functions option.

 The functions expand to fill the screen.

 Locate the largest function box in the function call tree. You can get the name of the

function by looking a little more closely at it:

PLACE

the mouse cursor over the View menu.

68 IBM PE for AIX 5L V4 R3.0: Introduction

The View menu appears.

PLACE

the mouse cursor over the Overview option.

CLICK

the left mouse button.

 The Overview Window appears.

 The Overview Window includes a light blue highlight area that lets you zoom in and

out of specific areas of the function call tree. To take a closer look at the largest

function of naive:

PLACE

the mouse cursor over the lower left corner of the blue highlight area. You

know that the cursor is over the corner when the cursor icon changes to a

right angle with an arrow pointing into it.

PRESS and HOLD

the left mouse button, and drag it diagonally upward and to the right

(toward the center of the sizing box) to shrink the box. When it is about half

its original size, release the mouse button.

 The corresponding area of the function call tree, in the main window,

appears magnified.

Figure 1. Overview window

Chapter 4. Is the program efficient? 69

If the largest function was not within the highlight area, it did not get magnified. If

this was the case, you will need to move the highlight area:

PLACE

the cursor over the highlighted area.

PRESS and HOLD

the left mouse button.

DRAG the highlight area, using the mouse, and place it over the largest function.

Release the mouse button.

 The largest function appears magnified in the function call tree.

 Just below the function is its name, so you can now see that most of the work is

being done in the compute_stencil() subroutine. This subroutine is where you

should focus your attention.

It is important to note that the programming style you choose can influence the

program’s performance just as much as the algorithm you use. In some cases, this

will be clear by looking at the data you collect when the program executes. In other

cases, you will know this from experience. There are many books that cover the

subject of code optimization, many of which are extremely complex.

The goal here is not to use every optimization trick but to focus on some basic

techniques that can produce the biggest performance boost for the time and effort

spent.

Profile the program using the Performance Collection Tool

The best way to begin is to look at your use of memory (including hardware data

cache) as well as what you are doing in the critical section of your code. To do this,

use the Performance Collection Tool to count the number of cache misses. The

fewer the number of cache misses, the better the performance of your code will be.

When you profile your program using PCT, you need to compile it with the required

-g flag to generate profiling data. You can also include the optional -o flag to specify

an output file:

$ xlf -g -o naive naive.f

Once you have generated the profiling data, you can use PCT to examine the data

in detail.

TYPE pct to start up the Performance Collection Tool graphical user interface.

From the main window, you are prompted to either load and start an

application or connect to one that is already running.

SELECT

the Load a new application option and click on OK.

 The Load Application window opens and you are prompted to select the

application you want to load.

70 IBM PE for AIX 5L V4 R3.0: Introduction

CLICK

the Browse button next to the Executable Name field and select the naive

program and identify it as a serial application.

CLICK

the Load button to load the application.

 The Probe Data Selection window opens.

Figure 2. Load application window

Chapter 4. Is the program efficient? 71

SELECT

the type of data you want to collect. Select the Hardware and operating

system profiles option.

SPECIFY

the directory and base name for the output file and click OK. Note that the

base name you specify will have a .cdf suffix and a task number suffix

appended to it.

 The main window comes to the foreground and the source tree for the

naive executable is expanded.

Figure 3. Probe data selection window

72 IBM PE for AIX 5L V4 R3.0: Introduction

SELECT

the naive task from the Process List.

SELECT

the naive_f function to expand it.

SELECT

the compute_stencil() subroutine from the naive.f file in the source tree.

SELECT

the hardware counter probe to collect cache information. You will want to

select the L1 option to display level one information. For example, the

option you select may look like:

2 L1_TLB

Figure 4. Source tree window

Chapter 4. Is the program efficient? 73

CLICK

the Add button. If you look at the compute_stencil() subroutine in the

source tree, you will see that a Probe ID has been added.

SELECT

Application → Start from the menu bar to run the program.

 When the application program has finished executing, the Target

Application Exited window appears. Click on the OK button to exit PCT.

Profile the program using the Profile Visualization Tool

Now that you have collected your data on cache misses, you want to be able to

view it and you can do that using the Profile Visualization Tool (PVT). PCT

generates a NetCDF file (Network Common Data File) which you can view using

PVT.

TYPE pvt to start up the Profile Visualization Tool.

SELECT

File → Load from the menu bar to select and load the CDF file. Locate the

CDF file that was generated from PCT from the list of files that appears and

select it.

CLICK

the Open button to load the file.

SELECT

View → Expand All to expand the tree to view the function

compute_stencil()

Figure 5. Process list, source tree, and probe selection window

74 IBM PE for AIX 5L V4 R3.0: Introduction

CLICK

the Function Call Count option in the pulldown menu located in the top

right side of the Data View area. Select the Data cache miss option to view

the number of cache misses for the function compute_stencil. The amount

of L1 cache misses for each function are listed in the Data View window

area.

 Let’s look at your code:

iter_count = 0

100 CONTINUE

local_err = 0.0

iter_count = iter_count + 1

DO i=1, m-2

DO j=1, n-2

old_value = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +

1 stencil(i+1, j) +

2 stencil(i ,j-1) +

3 stencil(i ,j+1)) / 4

local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

END DO

END DO

IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, local_err

IF (close_enough.LT.local_err) GOTO 100

PRINT *, "convergence reached after ", iter_count, " iterations."

By looking at the two DO loops above, you can see that your compute subroutine is

traversing your array first across rows, and then down columns. This program must

have been written by some alien being from the planet C because Fortran arrays

are stored in column major form rather than row major form.

The first improvement you should make is to reorder your loops so that they

traverse down columns rather than across rows. This should provide a reasonable

Figure 6. Data view area

Chapter 4. Is the program efficient? 75

performance boost. Note that it is not always possible to change the order of loops;

it depends on the data referenced within the loop body. As long as the values used

in every loop iteration do not change when the loops are reordered, then it is safe

to change their order. In the example it was safe to reorder the loops, so here is

what the revised program looks like. Notice that only the order of the loops was

swapped.

DO j=1, n-2

DO i=1, m-2

old_value = stencil(i,j)

The second thing you should look at is the type of work that is being done in your

loop. If you look carefully, you will notice that the MAX and ABS subroutines are

called in each iteration of the loop, so you should make sure these subroutines are

compiled inline. Because these subroutines are intrinsic to your Fortran compiler,

this is already done for us.

$ xlf -O2 reordered.f -o reordered

In the last scenario, you ran the naive program. You should now run the same

scenario using the reordered program to more accurately compare the cache

misses. You should see that the number of cache misses for reordered has

decreased, thereby increasing the program’s efficiency.

If you run the previous scenario again using the reordered subroutine, you notice

that the cache misses are lower:

As before, you need to time your run, like this:

$ time reordered

Figure 7. Data view area (fewer cache misses showing)

76 IBM PE for AIX 5L V4 R3.0: Introduction

And here are the results as compared to the original naive version:

 Table 3. Comparison of programs 'naive' and 'reordered'

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11 min. 1.94 sec. 1000 by 1000

reordered 1 (single processor) 5 min. 35.38 sec. 1000 by 1000

The execution times appearing in Table 3 were obtained with an earlier version of

PE MPI on an IBM eServer clustered 1600 server. The execution times may be

different, depending on the system that you are using, but the concepts for

improving an application to reduce execution time are unchanged.

As you can see by the results, with just a small amount of analysis, you doubled

performance. And you have not even considered parallelism yet. However, this still

is not the performance that you want, especially for very large arrays (the CPU time

is good, but the elapsed time is not).

Parallelize it

Now feeling confident that your serial program is reasonably efficient, you should

look at ways to parallelize it. There are many ways to parallelize a program, but the

two most commonly used techniques are functional decomposition and data

decomposition. You will focus on data decomposition.

How do you decompose your data? Start by dividing the work across the

processors. Each task will compute a section of an array, and each program will

solve 1/n of the problem when using n processors.

Here is the algorithm:

v First, divide up the array space across each processor (each task will solve a

subset of the problem independently).

v Second, loop:

– exchange shared array boundaries

– solve the problem on each sub array

– share a global max

until the global max is within the tolerance.

The section of code for your algorithm looks like this:

 iter_count = 0

 100 CONTINUE

 local_err = 0.0

 iter_count = iter_count + 1

 CALL exchange(stencil, m, n)

 DO j=1, n-2

 DO i=1, m-2

 old_value = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

 END DO

 END DO

 CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,

Chapter 4. Is the program efficient? 77

|
|
|
|

1 MPI_Max, MPI_Comm_world, ierror)

 IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error

 IF (close_enough.LT.global_error) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

Now, let’s compile your parallelized version:

$ mpxlf -02 chaotic.f -o chaotic

Next, let’s run it and look at the results:

$ export MP_PROCS=4

$ export MP_LABELIO=yes

$ time poe chaotic

 Table 4. Comparison of programs 'naive', 'reordered', and 'chaotic'

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11 min. 1.94 sec. 1000 by 1000

reordered 1 (single processor) 5 min. 35.38 sec. 1000 by 1000

chaotic 4 (processors) 2 min. 4.58 sec. 500 by 500

The execution times appearing in Table 4 were obtained with an earlier version of

PE MPI on an IBM eServer clustered 1600 server. The execution times may be

different, depending on the system that you are using, but the concepts for

improving an application to reduce execution time are unchanged.

The previous results show that you more than doubled performance by parallelizing

your program. Since you divided up the work between four processors, you

expected your program to execute four times faster. Why did it not do so? This

could be due to one of several factors that tend to influence overall performance:

v Message passing overhead

v Load imbalance

v Convergence rates

Right now you need to ask something more important; does the parallel program

get the same answer?

The algorithm you chose gives us a correct answer, but as you will see, it does not

give us the same answer as your serial version. In practical applications, this may

be acceptable. In fact, it is very common for this to be acceptable in Gauss/Seidel

chaotic relaxation. But what if it is not acceptable? How can you tell? What methods

or tools can be used to help us diagnose the problem and find a solution?

Wrong answer!

You have now invested all this time and energy in parallelizing your program using

message passing, so why can you not get the same answer as the serial version of

the program? This is a problem that many people encounter when parallelizing

applications from serial code and can be the result of algorithmic differences,

program defects, or environment changes.

Both the serial and parallel versions of your program give correct answers based on

the problem description, but that does not mean they both cannot compute different

answers! Let’s examine the problem more closely by running the chaotic.f program

under the pdbx debugger:

$ pdbx chaotic

78 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|

By looking at the main program, you can see that both versions of your program

(reorder.f and chaotic.f) read in the same data file as input. And after you initialize

your parallel environment, you can see that the compute_stencil subroutine

performs exactly the same step to average stencil cells.

Run each version under the control of the debugger to view and compare the

results of your arrays.

With this test, you will be looking at the upper left quadrant of the entire array. This

allows us to compare the array subset on task 0 of the parallel version with the

same subset on the serial version.

Here is the serial (reordered) array and parallel (chaotic) array stencils:

 In chaotic.f, set a breakpoint within the call compute_stencil at line 168.

pdbx(all) stop at 168

all:[0] stop at "chaotic.f":168

After you do this, all tasks should have a breakpoint set at line 168.

Continue to execute the program up to the breakpoints. The program counter

should now be positioned at line 168.

pdbx(all) cont

 0: initializing the array.

 0: computing the stencil.

 0: 100 1.397277832

 1: 100 1.397277832

 ...

 ...

 1:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 1: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 2:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 2: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 3:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 3: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 0:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 0: 168 PRINT *, "convergence reached after", iter_count, "iterations."

Figure 8. Serial and parallel array stencils

Chapter 4. Is the program efficient? 79

Next, you will need to examine the array stencil. Switch the context to task 0, then

print the 499th row of the array:

pdbx print stencil(499,1..10)

0:(499,1) = 8.00365734

0:(499,2) = 15.9983482

0:(499,3) = 23.9780369

0:(499,4) = 31.9367294

0:(499,5) = 39.8684845

0:(499,6) = 47.7674294

0:(499,7) = 55.6277695

0:(499,8) = 63.4438095

0:(499,9) = 71.2099609

0:(499,10) = 78.9207458 ...

Let’s take a close look at the data of each.

Here is the reordered data:

(row, col)

 (499,1) (499,2) (499,3) (499,4) (499,5) (499,6)

 8.00365734 15.9983482 23.9780369 31.9367294 39.8684845 47.7674294

 (499,7) (499,8) (499,9) (499,10)

 55.6277695 63.4438095 71.2099609 78.9207458

Here is the chaotic data:

(row, col)

(499,1) (499,2) (499,3) (499,4) (499,5) (499,6)

 8.04555225 16.0820065 24.1032257 32.1031151 40.0756378 48.0148277

(499,7) (499,8) (499,9) (499,10)

 55.9147987 63.7697601 71.5740356 79.3220673

After looking at the data, you see that your answers are definitely similar, but

different. Why? You can blame it on a couple of things, but it is mostly due to the

chaotic nature of your algorithm. By looking at how the average is computed in the

serial version of your program, you can see that within each iteration of your loop,

two array cells are from the old iteration and two are from new ones.

 Another factor is that the north and west borders contain old values at the

beginning of each new sweep for all tasks except the northwest corner. The serial

version would use new values in each of those quadrants instead of old values. In

the parallel version of your program, this is true for the interior array cells but not for

Figure 9. How the average is computed in a 4-point stencil

80 IBM PE for AIX 5L V4 R3.0: Introduction

your shared boundaries. For more information, you may find In Search of Clusters

by Gregory F. Pfister, Prentice Hall, 1998, helpful.

OK, now that you know why you get different answers, is there a fix?

Here’s the fix!

So, you have a serial and parallel program that do not give you the same answers.

One way to fix this is to skew the processing of the global array. You skew the

processing of the array, computing the upper left process coordinate first, then each

successive diagonal to the lower right process coordinate. Each process sends the

east and south boundary to its neighboring task.

 The only thing you need to modify in your new program is the message passing

sequence. Prior to the compute_stencil() subroutine, each task receives boundary

cells from its north and west neighbors. Each task then sends its east and south

boundary cells to its neighbor. This guarantees that the array cells are averaged in

the same order as in your serial version.

Here is your modified (skewed) parallel program. It is called skewed.f.

 iter_count = 0

 100 CONTINUE

 local_err = 0.0

 iter_count = iter_count + 1

 CALL exch_in(stencil, m, n)

 DO j=1, n-2

 DO i=1, m-2

 old_value = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

 END DO

 END DO

 CALL exch_out(stencil, m, n)

 CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,

 1 MPI_Max, MPI_Comm_world, ierror)

Figure 10. Sequence of array calculation

Chapter 4. Is the program efficient? 81

IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error

 IF (close_enough.LT.global_error) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

Now let’s run this new version and look at the results:

$ time poe skewed

 Table 5. Comparison of programs 'naive', 'reordered', 'chaotic', and 'skewed'

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11 min. 1.94 sec. 1000 by 1000

reordered 1 (single processor) 5 min. 35.38 sec. 1000 by 1000

chaotic 4 (processors) 2 min. 4.58 sec. 500 by 500

skewed 4 (processors) 4 min. 41.87 sec. 500 by 500

The execution times appearing in Table 5 were obtained with an earlier version of

PE MPI on an IBM eServer clustered 1600 server. The execution times may be

different, depending on the system that you are using, but the concepts for

improving an application to reduce execution time are unchanged.

If you do the same array comparison again, you can see that you do indeed get the

same results. But, of course, nothing is that easy. By correcting the differences in

answers, you slowed down execution significantly, so the hidden cost here is time.

Now what do you do?

It’s still not fast enough!

You have obtained the right answers now, but you still want your program to move

faster. Look at your new code to see what other techniques you can use to speed

up execution. You will look at:

v Convergence rates (total number of iterations)

v Load balance

v Synchronization/communication time.

One way to further analyze your program is to use the Argonne National

Laboratory’s Jumpshot tool. Using the PE Benchmarker traceTOslog2 utility, you

can generate a SLOG2 file which you can then load into Jumpshot and use to

determine how you can get your program to run faster. You are going to use

Jumpshot to determine the effectiveness of the program’s message passing

characteristics.

The traceTOslog2 command, which is used to invoke the PE traceTOslog2 utility, is

provided as part of the slog2 package available from Argonne National Laboratory.

Step 1 - Determine which SLOG file to generate

PE has the ability to produce two types of SLOG files (called SLOG and SLOG2),

which have incompatible formats. IBM recommends you produce SLOG2 files, and

the following examples illustrate this. The SLOG and SLOG2 files must be used

with the correct utilities, according to these rules:

v SLOG files are created by the PE slogmerge utility, and are passed as input to

the Jumpshot-3 utility.

v SLOG2 files are created by the PE traceTOslog2 utility and passed to the

Jumpshot-4 utility.

82 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|

Both Jumpshot-3 and Jumpshot-4 are public domain programs developed by

Argonne National Laboratory. If you are not sure which one is installed on the

system, ask the administrator.

For information about SLOG2 files, see http://www-unix.mcs.anl.gov/perfvis/
software/log_format/index.htm#SLOG-2. For information about Jumpshot-4, see

http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm#Jumpshot-4.

For information about performance visualization from Argonne National Laboratory,

see http://www.mcs.anl.gov/perfvis.

Step 2 - Link program with the library that created MPI trace files

Before analyzing the program using Jumpshot, you must link the program with the

library that creates the MPI trace files used in the analysis. You do this by setting

the MP_UTE environment variable to YES before compiling the program. Assuming

you are using ksh, issue the command export MP_UTE=YES before compiling the

program. Once you set the environment variable, it remains set for the duration of

the login session.

Step 3 - Gather performance data to AIX trace file

TYPE pct to start up the Performance Collection Tool graphical user interface.

From the Welcome window, you are prompted to either load and start an

application or to connect to one that is already running.

SELECT

the Load a new application option and click on OK.

 The Load Application window opens and you are prompted to select the

application you want to load.

CLICK

the Browse button next to the Executable Name field and select the

chaotic program and identify it as an SPMD application.

TYPE the POE arguments in the POE Arguments field. For example, the

following argument specifies that you are running a 4–way parallel job:

-procs 4

CLICK

the Load button to load the application.

 The Probe Data Selection window opens.

SELECT

the type of data you want to collect. You want to select the MPI and user

event traces option.

SPECIFY

the directory and base name for the output file. In this scenario, you are

using the base name mytrace. Then click on OK.

 The main window appears again with the source tree for the skewed

executable expanded.

SELECT

Process → Select All Tasks.

SELECT

the chaotic.f () subroutine from the source tree.

SELECT

the All MPI events to collect trace information from the Probe Selection

area on the side of the main window.

Chapter 4. Is the program efficient? 83

CLICK

the Add button.

SELECT

Application → Start from the menu bar to run the program.

 When the application program has finished executing, the Target

Application Exited window appears. Click on the OK button to exit PCT.

Step 4 - Convert AIX trace file to UTE interval files

You have successfully collected data on message passing that now exists in a

standard AIX trace file. To view and analyze the data using Jumpshot, you first

need to convert the AIX trace file, using the uteconvert utility, into UTE (Unified

Trace Environment) interval files.

TYPE

uteconvert mytrace

where mytrace is the name of the trace file located in the current directory.

mytrace is the prefix of the filename of the trace file. For example, if you

had three tasks, the trace files would be named mytrace0, mytrace1, and

mytrace2. This trace file has the same name as the file you specified for the

output earlier in your example. This command will convert the trace file from

AIX trace format into the UTE interval file.

 Using the -o flag, you can optionally specify the name of the output UTE interval

file. For example, to specify that the output file should be named outputfile,

TYPE

uteconvert -o outputfile mytrace

To convert a set of AIX trace files into a set of UTE interval files, specify the number

of files using the –n option, and supply the common ″base name″ prefix shared by

all of the files. For example, to convert five trace files with the prefix mytraces into

UTE interval files, copy the trace files into a common directory,

TYPE

uteconvert -n 5 mytraces

Step 5 - Convert UTE interval files to SLOG2 files

First, review the differences between SLOG and SLOG2 files, to ensure that you

are using the correct PE conversion utility. This is explained in “Step 1 - Determine

which SLOG file to generate” on page 82.

Convert the UTE interval files into SLOG2 files using the traceTOslog2 utility.

TYPE

traceTOslog2 mytrace.ute

where mytrace is the name of the UTE interval file.

The default output file name is the name of the input file, with .slog2 appended. If

more than one input file is processed, an output file name must be specified.

Use the -o option on the traceTOslog2 command to specify an output file name.

For example:

TYPE

traceTOslog2 -o mergedtrc.slog mytrace.ute

84 IBM PE for AIX 5L V4 R3.0: Introduction

If you have multiple interval files, use –n to specify the number of files.

Note: If the traces were generated on a system without access to a switch, the -g

flag is required when processing more than one input file.

Step 6 - Run Jumpshot

First, review the differences between SLOG and SLOG2 files, to ensure that you

are using the correct PE conversion utility. This is explained in “Step 1 - Determine

which SLOG file to generate” on page 82. Jumpshot is a public domain tool

developed by Argonne National Laboratory and is not part of the PE Benchmarker

Toolset.

TYPE jumpshot to display the Jumpshot graphical user interface. (You have

already downloaded the Jumpshot program available from Argonne National

Laboratory).

SELECT

File → Select from the menu bar to load the SLOG2 file. Then select the

SLOG2 file using the file selector dialog.

 The window that appears displays the events of the program across a time

line. To see detailed load balancing information, continue on with the next

step.

CLICK

the Display button.

 Figure 11 on page 86 illustrates the MPI functions occurring during the execution of

the skewed program. Each box shown represents an MPI function and the arrows

and lines represent communications calls between or within the functions.

Chapter 4. Is the program efficient? 85

Figure 12 on page 87 shows the colors used to draw each interval. It also allows

classes of intervals to be selected for display or searching, and to modify the colors

of the intervals while viewing.

Figure 11. Jumpshot - skewed program

86 IBM PE for AIX 5L V4 R3.0: Introduction

Step 7 - Analyze results, make changes, verify improvements

By looking at the message passing, you can see some peculiar characteristics of

your program. For instance, you notice that many of the processors waste time by

waiting for others to complete before they continue. These kinds of characteristics

lead us to the conclusion that you have introduced very poor load balancing across

tasks.

One way to alleviate this problem is to allow some processors to work ahead if they

can deduce that another iteration will be necessary to find a solution. If a task’s

individual max is large enough on one iteration to force the global max to reiterate

across the entire array, that task may continue on the next iteration when its west

and north boundaries are received.

To illustrate this, use the pipelined.f program.

 iter_count = 0

 local_err = close_enough + 1

 100 CONTINUE

 iter_count = iter_count + 1

Figure 12. Jumpshot legend - skewed program

Chapter 4. Is the program efficient? 87

CALL exch_in(stencil, m, n, local_err, global_err,

 1 iter_count, close_enough)

 IF (MAX(global_err,local_err).GE.close_enough) THEN

 local_err = 0.0

 DO j=1, n-2

 DO i=1, m-2

 old_val = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err, ABS(old_val-stencil(i,j)))

 END DO

 END DO

 END IF

 CALL exch_out(stencil, m, n, global_err, local_err)

 IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_err

 IF (MAX(global_err,local_err).GE.close_enough) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

As you can see on the following line:

IF(MAX(global_err,local_err).GE.close_enough) THEN

the program checks to see if the value of local_err is enough to allow this task to

continue on the next iteration. These improvements to your program should result in

improvement in your load balance as well.

Now, let’s run your new code to see how this new version fares.

$ time poe pipelined

 Table 6. Comparison of programs 'naive', 'reordered', 'chaotic', 'skewed', and 'pipelined'

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11 min. 1.94 sec. 1000 by 1000

reordered 1 (single processor) 5 min. 35.38 sec. 1000 by 1000

chaotic 4 (processors) 2 min. 4.58 sec. 500 by 500

skewed 4 (processors) 4 min. 41.87 sec. 500 by 500

pipelined 4 (processors) 2 min. 7.42 sec. 500 by 500

The execution times appearing in Table 6 were obtained with an earlier version of

PE MPI on an IBM eServer clustered 1600 server. The execution times may be

different, depending on the system that you are using, but the concepts for

improving an application to reduce execution time are unchanged.

You were able to significantly improve the performance of your program and, at the

same time, get a consistent, correct answer.

You can further analyze the pipelined program’s load balance using Jumpshot.

Figure 13 on page 89 illustrates that the load balance has improved in the pipelined

program. This picture shows the communication patterns, but the interval between

communications is so large that no detail can be seen in any sequence.

88 IBM PE for AIX 5L V4 R3.0: Introduction

|
|
|
|

Figure 14 on page 90 is a closer look at a single communication sequence to see

the detail of that sequence.

Figure 13. Jumpshot - pipelined program showing improved load balance

Chapter 4. Is the program efficient? 89

Figure 15 on page 91 shows the colors for the intervals in the other figures. It also

allows classes of intervals to be selected for display or searching, and to modify the

colors of the intervals while viewing.

Figure 14. Jumpshot - pipielined program communication sequence

90 IBM PE for AIX 5L V4 R3.0: Introduction

Figure 15. Jumpshot legend – pipelined program

Chapter 4. Is the program efficient? 91

Tuning summary

Tuning the performance of a parallel application is no easier than tuning the

performance of a sequential application. If anything, the parallel nature introduces

another factor into the tuning equation. The approach PE has taken toward

performance tuning is to provide tools which give you the information necessary to

perform the tuning.

92 IBM PE for AIX 5L V4 R3.0: Introduction

Chapter 5. Creating a safe program

Going from serial to parallel programming means that you are on a different scale

now. There are some things that you need to pay attention to as you create your

parallel programs. In particular, you need information on creating a safe MPI

program. MPI: A Message-Passing Interface Standard, Version 1.1, which is

available from the University of Tennessee (http://www.mpi-forum.org/) provides

additional. information. You may want to refer to that document.

What is a safe program?

The MPI standard defines a program to as safe if message buffering is not required

for the program to complete. In a program like this, you should be able to replace

all standard sends with synchronous sends, and the program will still run correctly.

This type of programming style is cleaner and more efficient; it provides good

portability because program completion does not depend on the amount of available

buffer space.

With PE, setting the MP_EAGER_LIMIT environment variable to 0 is equivalent to

making all sends synchronous, including those used in collective communication. A

good test of your program’s safety is to set the MP_EAGER_LIMIT to 0.

Some programmers prefer more flexibility and use an unsafe style that relies on

buffering. This style is not recommended and you use it at your own risk. PE MPI

does provide some buffer space to allow small messages to be processed

efficiently. This buffer memory is not intended as a guarantee that an unsafe

program will work. In many cases, this buffer space will allow an unsafe program to

run but there is no assurance that it will still run with more tasks, different input data

or on another implementation of MPI. You can use the buffered send mode for

programs that require more buffering, or in situations where you want more control.

Since buffer overflow conditions are easier to diagnose than deadlocks, you can

also use this mode for debugging purposes.

You can use nonblocking message passing operations to avoid the need for

buffering outgoing messages. This prevents deadlock situations due to a lack of

buffer space, and improves performance by allowing computation and

communication to overlap. It also avoids the overhead associated with allocating

buffers and copying messages into buffers.

Safety and threaded programs

Sometimes message passing programs can hang or deadlock. This can occur when

one task waits for a message that is never sent or when each task is waiting for the

other task to send or receive a message. Within a task, a similar situation can occur

when one thread is waiting for another thread to release a lock on a shared

resource, such as a piece of memory. If thread A, which holds the lock, cannot run

to the point at which it is ready to release it, the waiting thread B will never run.

This may occur because thread B holds some other lock that thread A needs.

Thread A cannot proceed until thread B does, and thread B cannot proceed until

thread A does.

When programs are both multi-thread and multi-task, there is risk of deadly

embrace involving both mutex and communication blocks. Say threads A and B are

on task 0, and thread A holds a lock while waiting for a message from task 1.

© Copyright IBM Corp. 1993, 2006 93

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Thread B will send a message to task 1 only after it gets the lock that thread A

holds. If task 1 will send the message that thread A is waiting for only after getting

the one that thread B cannot send, the job is in a 3-way deadly embrace, involving

two threads at task 0 and one thread at task 1.

A problem that is more subtle occurs when two threads simultaneously access a

shared resource without a lock protocol. The result may be incorrect without any

obvious sign. For example, the following function is not threadsafe, because the

thread may be preempted after the variable c is updated, but before it is stored.

int c; /* external, used by two threads */

void update_it()

 {

 c++; /* this is not threadsafe */

 {

You probably should avoid writing threaded message passing programs until you

are familiar with writing and debugging threaded, single-task programs.

Using threaded programs with non-threadsafe libraries

A threaded MPI program must meet the same criteria as any other threaded

program; it must avoid using non-threadsafe functions in more than one thread (for

example, strtok). In addition, it must use only threadsafe libraries, if library

functions are called on more than one thread. All of the libraries may not be

threadsafe, so you should carefully examine how they are used in your program.

Message ordering

With MPI, messages are non-overtaking. This means that the order of sends must

match the order of receives. Assume a sender sends two messages (Message 1

and Message 2) in succession, to the same destination, and both match the same

receive. The receive operation will receive Message 1 before Message 2. Likewise,

if a receiver posts two receives (Receive 1 and Receive 2), in succession, and both

are looking for the same message, Receive 1 will receive the message before

Receive 2. Adhering to this rule ensures that sends are always matched with

receives.

If a process in your program has a single thread of execution, then the sends and

receives that occur follow a natural order. However, if a process has multiple

threads, the various threads may not execute their relative send operations in any

defined order. In this case, the messages can be received in any order.

Order rules apply within each communicator. Weakly synchronized threads can

each use independent communicators to avoid many order problems.

The following is an example of using non-overtaking messages. The message sent

by the first send must be received by the first receive, and the message sent by the

second send must be received by the second receive.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

94 IBM PE for AIX 5L V4 R3.0: Introduction

Program progress when two processes initiate two matching sends

and receives

If two processes (or tasks) initiate two matching sends and receives, at least one of

the operations (the send or the receive) will complete, regardless of other actions

that occur in the system. The send operation will complete unless its matching

receive operation has already been satisfied by another message, and has itself

completed. Likewise, the receive operation will complete unless its matching send

message is claimed by another matching receive that was posted at the same

destination.

The following example shows two matching pairs that are intertwined in this

manner. Here is what happens:

1. Both processes invoke their first calls.

2. process 0’s first send indicates buffered mode, which means it must complete,

even if there is no matching receive. Since the first receive posted by process 1

does not match, the send message gets copied into buffer space.

3. Next, process 0 posts its second send operation, which matches process 1’s

first receive, and both operations complete.

4. process 1 then posts its second receive, which matches the buffered message,

so both complete.
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

 CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

Communication fairness

MPI does not guarantee fairness in the way communications are handled. It is your

responsibility to prevent starvation among the operations in your program.

One example of an unfair situation might be where a send, with a matching receive

on another process, does not complete because another message, from a different

process, overtakes the receive.

Resource limitations

If a lack of resources prevents an MPI call from executing, errors may result.

Pending send and receive operations consume a portion of your system resources.

MPI attempts to use a minimal amount of resource for each pending send and

receive, but buffer space is required for storing messages sent in either standard or

buffered mode when no matching receive is available.

When a buffered send operation cannot complete due to a lack of buffer space, the

resulting error could cause your program to terminate abnormally. On the other

hand, a standard send operation that cannot complete because of a lack of buffer

space, will block and wait for buffer space to become available or for the matching

receive to be posted. In some situations, this behavior is preferable because it

avoids the error condition associated with buffer overflow.

Chapter 5. Creating a safe program 95

Sometimes a lack of buffer space can lead to deadlock. The program in the

following example will succeed even if no buffer space for data is available.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

In this next example, neither process will send until the other process sends first. As

a result, this program will always result in deadlock.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The example below shows how message exchange relies on buffer space. The

message send by each process must be copied out before the send returns and the

receive starts. Consequently, at least one of the two messages sent needs to be

buffered for the program to complete. As a result, this program can execute

successfully only if the communication system can buffer at least the words of data

specified by count.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

When standard send operations are used, deadlock can occur where both

processes are blocked because buffer space is not available. This is also true for

synchronous send operations. For buffered sends, if the required amount of buffer

space is not available, the program will not complete either, and instead of

deadlock, you will have buffer overflow.

96 IBM PE for AIX 5L V4 R3.0: Introduction

Appendix A. A sample program to illustrate messages

This is sample output for a program run under POE with the maximum level of

message reporting. There are also illustrations of the different types of messages

you can expect, and their meaning.

To set the level of messages that are reported when you run your program, you can

use the -infolevel (or -ilevel) option when you invoke POE. You can also use the

MP_INFOLEVEL environment variable. Setting either of these to 6 gives you the

maximum number of diagnostic messages when you run your program. For more

information about setting the POE message level, see IBM Parallel Environment:

Operation and Use, Volume 1.

Note that we are using numbered prefixes along the left-hand edge of the following

output as a way to refer to particular lines. The prefixes are not part of the output

you will see when you run your program. For an explanation of the messages

denoted by these numbered prefixes, see “Figuring out what all of this means” on

page 99.

This command produces output similar to the following:

> poe hello_world_c -procs 2 -rmpool 1 -infolevel 6

 +1 INFO: DEBUG_LEVEL changed from 0 to 4

 +2 D1<L4>: Open of file ./host.list successful

 +3 ATTENTION: 0031-379 Pool setting ignored when

 hostfile used

 +4 D1<L4>: mp_euilib = ip

 +5 D1<L4>: 03/04 13:55:37.682266 task 0

 k151f1rp02.kgn.ibm.com 89.116.177.5 11

 +6 D1<L4>: 03/04 13:55:37.684025 task 1

 k151f1rp02.kgn.ibm.com 89.116.177.5 11

 +7 D1<L4>: node allocation strategy = 0

 +8 D1<L4>: Entering pm_contact, jobid is 0

 +9 D1<L4>: Jobid = 1110376467

 +10 D1<L4>: POE security method is COMPAT

 +11 D1<L4>: Requesting service pmv4

 +12 D1<L4>: 1 master nodes

 +13 D4<L4>: LoadLeveler Version 0 Release 0

 +14 D1<L4>: Socket file descriptor for master 0

 (k151f1rp02.kgn.ibm.com) is 4

 +15 D1<L4>: SSM_read on socket 4, source = 0,

 task id: 0, nread: 12, type:3.

 +16 D1<L4>: Leaving pm_contact, jobid

 is 1110376467

 +17 D1<L4>: attempting to bind socket

 to /tmp/s.pedb.413930.1079

 +18

 +19 D4<L4>: Command args:<>

 +20 D3<L4>: Message type 34 from source 0

 +21 D4<L4>: Task 0 pulse received,count is 0

 curr_time is 1109962537

 +22 D4<L4>: Task 0 pulse acknowledged, count is 0

 curr_time is 1109962537

 +23 D3<L4>: Message type 21 from source 0

 +24 INFO: 0031-724 Executing program:

 <../../hello_world_c>

 +25 D3<L4>: Message type 21 from source 0

 +26 D1<L4>: Affinity is not requested;

 MP_TASK_AFFINITY: -1

 +27 D3<L4>: Message type 21 from source 1

 +28 D3<L4>: Message type 21 from source 1

 +29 INFO: 0031-724 Executing program:

© Copyright IBM Corp. 1993, 2006 97

|
|
|

<../../hello_world_c>

 +30 D1<L4>: Affinity is not requested;

 MP_TASK_AFFINITY: -1

 +31 D3<L4>: Message type 21 from source 0

 +32 INFO: DEBUG_LEVEL changed from 0 to 4

 +33 D3<L4>: Message type 21 from source 0

 +34 D3<L4>: Message type 21 from source 0

 +35 D4<L4>: pm_async_thread sends cond sig

 +36 D4<L4>: pm_async_thread calls sigwait,

 in_async_thread=0

 +37 D4<L4>: pm_main, wake up from timed cond wait

 +38 D1<L4>: In mp_main, mp_main will not

 be checkpointable

 +39 D3<L4>: Message type 21 from source 0

 +40 D1<L4>: mp_euilib is <ip>

 +41 D3<L4>: Message type 21 from source 0

 +42 D1<L4>: Executing _mp_init_msg_passing()

 from MPI_Init()...

 +43 D3<L4>: Message type 21 from source 0

 +44 D1<L4>: mp_css_interrupt is <0>

 +45 D1<L4>: About to call mpci_connect

 +46 D3<L4>: Message type 21 from source 1

 +47 INFO: DEBUG_LEVEL changed from 0 to 4

 +48 D3<L4>: Message type 21 from source 1

 +49 D4<L4>: pm_async_thread sends cond sig

 +50 D3<L4>: Message type 21 from source 0

 +51 INFO: 0031-619 32bit(ip)

 MPCI shared object was compiled at

 Wed Mar 2 13:44:02 2005

 +52

 +53 D3<L4>: Message type 21 from source 1

 +54 D4<L4>: pm_async_thread calls sigwait, in_async_thread=0

 +55 D4<L4>: pm_main, wake up from timed cond wait

 +56 D1<L4>: In mp_main, mp_main will not be checkpointable

 +57 D1<L4>: mp_euilib is <ip>

 +58 D3<L4>: Message type 21 from source 1

 +59 D1<L4>: Executing _mp_init_msg_passing() from MPI_Init()...

 +60 D3<L4>: Message type 21 from source 1

 +61 D1<L4>: mp_css_interrupt is <0>

 +62 D1<L4>: About to call mpci_connect

 +63 D3<L4>: Message type 21 from source 0

 +64 LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c,

 lapi, rsct_rag2, rag20508a 32bit(ip) library compiled on

 Wed Mar 2 11:46:57 2005

 +65 .

 +66 D3<L4>: Message type 21 from source 0

 +67 LAPI is using lightweight lock.

 +68 D3<L4>: Message type 21 from source 1

 +69 LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c, lapi,

 rsct_rag2, rag20508a 32bit(ip) library compiled on

 Wed Mar 2 11:46:57 2005

 +70 .

 +71 D3<L4>: Message type 21 from source 1

 +72 LAPI is using lightweight lock.

 +73 D3<L4>: Message type 23 from source 0

 +74 D1<L4>: init_data for instance number 0,

 task 0: <158498562:37292>

 +75 D3<L4>: Message type 23 from source 1

 +76 D1<L4>: init_data for instance number 0,

 task 1: <158498562:37293>

 +77 D3<L4>: Message type 21 from source 1

 +78 The MPI shared memory protocol is used for the job

 +79 D3<L4>: Message type 21 from source 0

 +80 The MPI shared memory protocol is used for the job

 +81 D1<L4>: Elapsed time for mpci_connect: 1 seconds

 +82 D3<L4>: Message type 21 from source 1

 +83 D1<L4>: Elapsed time for mpci_connect: 1 seconds

98 IBM PE for AIX 5L V4 R3.0: Introduction

+84 D3<L4>: Message type 21 from source 0

 +85 D1<L4>: _css_init: rc from HPSOclk_init is 1

 +86

 +87 D1<L4>: About to call _ccl_init

 +88 D3<L4>: Message type 21 from source 1

 +89 D1<L4>: _css_init: rc from HPSOclk_init is 1

 +90

 +91 D1<L4>: About to call _ccl_init

 +92 D3<L4>: Message type 88 from source 0

 +93 D3<L4>: Message type 88 from source 1

 +94 D3<L4>: Message type 21 from source 0

 +95 D2<L4>: Global Data for

 task 0: 1;0,89.116.177.5,-3;778658413,89.116.177.5,-3;

 +96 D3<L4>: Message type 21 from source 1

 +97 D2<L4>: Global Data for

 task 1: 1;0,89.116.177.5,-3;778658413,89.116.177.5,-3;

 +98 D3<L4>: Message type 21 from source 0

 +99 D1<L4>: Elapsed time for _ccl_init: 0 seconds

 +100 D3<L4>: Message type 21 from source 1

 +101 D1<L4>: Elapsed time for _ccl_init: 0 seconds

 +102 D3<L4>: Message type 20 from source 0

 +103 Hello World !!

 +104 D3<L4>: Message type 62 from source 0

 +105 D3<L4>: Message type 20 from source 1

 +106 Hello World !!

 +107 D3<L4>: Message type 62 from source 1

 +108 D3<L4>: Message type 21 from source 0

 +109 INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 +110 D3<L4>: Message type 17 from source 0

 +111 D3<L4>: Message type 21 from source 1

 +112 INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 +113 D3<L4>: Message type 17 from source 1

 +114 D3<L4>: Message type 22 from source 0

 +115 INFO: 0031-656 I/O file STDOUT closed by task 0

 +116 D3<L4>: Message type 22 from source 0

 +117 INFO: 0031-656 I/O file STDERR closed by task 0

 +118 D3<L4>: Message type 22 from source 1

 +119 INFO: 0031-656 I/O file STDOUT closed by task 1

 +120 D3<L4>: Message type 22 from source 1

 +121 INFO: 0031-656 I/O file STDERR closed by task 1

 +122 D3<L4>: Message type 15 from source 0

 +123 D1<L4>: Accounting data from task 0 for source 0:

 +124 D3<L4>: Message type 15 from source 1

 +125 D1<L4>: Accounting data from task 1 for source 1:

 +126 D3<L4>: Message type 1 from source 0

 +127 INFO: 0031-251 task 0 exited: rc=0

 +128 D3<L4>: Message type 1 from source 1

 +129 INFO: 0031-251 task 1 exited: rc=0

 +130 D1<L4>: All remote tasks have exited: maxx_errcode = 0

 +131 INFO: 0031-639 Exit status from pm_respond = 0

 +132 D1<L4>: Maximum return code from user = 0

 +133 D2<L4>: In pm_exit... About to call pm_remote_shutdown

 +134 D2<L4>: Sending PMD_EXIT to task 0

 +135 D2<L4>: Elapsed time for pm_remote_shutdown: 0 seconds

 +136 D2<L4>: In pm_exit... Calling exit with status = 0 at

 Fri Mar 4 13:55:38 2005

Figuring out what all of this means

When you set -infolevel to 6, you get the full complement of diagnostic messages.

The example in Appendix A, “A sample program to illustrate messages,” on page 97

includes numbered prefixes along the left-hand edge of the output so that you can

refer to particular lines, and then explain what they mean. Remember, that these

Appendix A. A sample program to illustrate messages 99

|

|

|
|
|

prefixes are not part of your output. This list points you to the line number of the

messages that are of most interest, and provides a short description of each.

Line number Message description

5-6 Names hosts that are used.

10 Indicates security method defined on the remote node.

11 Indicates that service pmv4, from /etc/services is being used.

14 Indicates node with partition manager running.

20 Message type 34 indicates pulse activity (the pulse mechanism

checked that each remote node was actively participating with the

home node).

23 Message type 21 indicates a STDERR message.

40, 57 Indicates that the euilib message passing protocol was specified.

42, 59 Indicates that message passing initialization has begun.

51 Timestamp of MPCI shared object being executed.

64, 69 Timestamp of LAPI library being executed.

78, 80 Indicates that MPI shared memory is being used.

81, 83 Indicates that initialization of MPCI has completed.

92, 93, 95, 97 Message type 88 shows MPI global task information.

102, 103, 105, 106

Message type 20 shows STDOUT from your program.

109, 112 Indicates that the user’s program has reached the exit handler. The

exit code is 0.

110, 113 Message type 17 indicates the tasks have requested to exit.

115, 117, 119, 121

Indicates that the STDOUT and STDERR pipes have been closed.

122, 124 Message type 15 indicates accounting data.

134 Indicates that the home node is sending an exit.

100 IBM PE for AIX 5L V4 R3.0: Introduction

|
|

||

||

||

||

||

||
|
|

||

||

||

||

||

||

||

||

|
|

||
|

||

|
|

||

||

Appendix B. Parallel Environment internals

This is some additional information about how the IBM Parallel Environment (PE)

works with respect to your application. Much of this information is also explained in

the IBM Parallel Environment: MPI Programming Guide.

What happens when I compile my applications?

In order to run your program in parallel, you first need to compile your application

source code with one of the following scripts:

1. mpcc_r

2. mpCC_r

3. mpxlf_r

4. mpxlf95_r

5. mpxlf90_r

To make sure the parallel execution works, these scripts add the following to your

application executable:

v POE initialization module, so POE can determine that all nodes can

communicate successfully, before giving control to the user application’s main()

routine.

v Signal handlers, for additional control in terminating the program during parallel

tracing, and enabling the handling of the process termination signals. The IBM

Parallel Environment: MPI Programming Guide explains the signals that are

handled in this manner.

The compile scripts dynamically link the Message Passing library interfaces in such

a way that the specific communication library that is used is determined when your

application executes.

Applications created as static executables are not supported.

How do my applications start?

Because POE adds its entry point to each application executable, user applications

do not need to be run under the poe command. When a parallel application is

invoked directly, as opposed to under the control of the poe command, POE is

started automatically. It then sets up the parallel execution environment and then

re-invokes the application on each of the remote nodes.

Serial applications can be run in parallel only using the poe command. However,

such applications cannot take advantage of the function and performance provided

with the message passing libraries.

How does POE talk to the nodes?

A parallel job running under POE consists of a home node (where POE was

started) and n tasks. Each task runs under the control of a Partition Manager

daemon (pmd). There is one pmd for each job on each node on which the job’s

tasks run.

When you start a parallel job, POE contacts the nodes assigned to run the job

(called remote nodes), and starts a pmd instance on each node. POE sends

© Copyright IBM Corp. 1993, 2006 101

environment information to the pmd daemons for the parallel job (including the

name of the executable) and the pmd daemons spawn processes to run the

executable. For tasks that run on the same node, the pmd daemon forks and

manages all tasks for that job on that node. It routes messages to and from each

remote task, and also coordinates with the home node to terminate each task.

The spawned processes have standard I/O redirected to socket connections back to

the pmd daemons. Therefore, any output the application writes to STDOUT or

STDERR is sent back to the pmd daemons. The pmd daemons, in turn, send the

output back to POE via another socket connection, and POE writes the output to its

STDOUT or STDERR. Any input that POE receives on STDIN is delivered to the

remote tasks in a similar fashion.

The socket connections between POE and the pmd daemons are also used to

exchange control messages for providing task synchronization, exit status, and

signaling. These capabilities are available to control any parallel program run by

POE, and they do not depend on the message passing library.

When POE executes without LoadLeveler, it is assumed that the Partition Manager

Daemon (PMD) is started under inetd. There is no consideration for running the

PMD without inetd.

When POE executes under LoadLeveler (including all User Space applications), the

PMD is started by LoadLeveler.

How are signals handled?

POE installs signal handlers for most signals that cause program termination and

interrupts, in order to control and notify all tasks of the signal. POE will exit the

program normally with a code of (128 + signal). If the user program installs a signal

handler for any of the signals POE supports, it should follow the guidelines

presented in IBM Parallel Environment: MPI Programming Guide.

What happens when my application ends?

POE returns exit status (a return code value between 0 and 255) on the home node

which reflects the composite exit status of the user application. The exit status can

have various conditions and values and each can have a specific meaning. These

are explained in The IBM Parallel Environment: MPI Programming Guide.

In addition, if the POE job-step function is used, the job control mechanism is the

program’s exit code. When the task exit code is 0 (zero), or in the range of 2 to

127, the job-step will be continued. If the task exit code is 1 or greater than 127,

POE terminates the parallel job, as well as any remaining user programs in the

job-step list. Also, any POE infrastructure failure detected (such as failure to open

pipes to the child process) will terminate the parallel job as well as any remaining

programs in the job-step list.

102 IBM PE for AIX 5L V4 R3.0: Introduction

Appendix C. Accessibility features for PE

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Parallel

Environment. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v Keys that are tactilely discernible and do not activate just by touching them.

v Industry-standard devices for ports and connectors.

v The attachment of alternative input and output devices.

Note: The IBM eServer Cluster Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all

features using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft® Windows® navigation keys.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1993, 2006 103

104 IBM PE for AIX 5L V4 R3.0: Introduction

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

This book refers to IBM’s implementation of the Message Passing Interface (MPI)

standard for Parallel Environment for AIX (PE). PE MPI intends to comply with the

requirements of the Message Passing Interface Forum described below. PE MPI

provides an implementation of MPI which is complete except for omitting the

features described in the ″Process Creation and Management″ chapter of MPI-2.

Permission to copy without fee all or part of these Message Passing Interface

Forum documents:

© Copyright IBM Corp. 1993, 2006 105

MPI: A Message Passing Interface Standard, Version 1.1

 MPI-2: Extensions to the Message Passing Interface, Version 2.0

is granted, provided the University of Tennessee copyright notice and the title of the

document appear, and notice is given that copying is by permission of the

University of Tennessee. ©1993, 1997 University of Tennessee, Knoxville,

Tennessee.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

106 IBM PE for AIX 5L V4 R3.0: Introduction

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States or other countries or both:

v AFS®

v AIX

v AIX 5L

v DFS

v ESCON®

v eServer

v IBM

v IBM Tivoli Workload Scheduler LoadLeveler

v IBMLink™

v LoadLeveler

v pSeries

v POWER

v POWER3

v RS/6000

v System p

v System p5

v System x

v Tivoli

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is

licensed exclusively through X/Open Company Limited.

InfiniBand is a registered trademark and service mark of the InfiniBand Trade

Association.

Microsoft is a registered trademark of Microsoft Corporation in the United States,

other countries, or both.

Windows is a registered trademark of Microsoft Corporation in the United States,

other countries, or both.

Other company, product, and service names may be the trademarks or service

marks of others.

Acknowledgements

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

Notices 107

108 IBM PE for AIX 5L V4 R3.0: Introduction

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical computing

applications, including high-function graphics and

floating-point computations.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. For a specific amount of time, the amount

of data that can be transmitted. Bandwidth is expressed

in bits or bytes per second (bps) for digital devices, and

in cycles per second (Hz) for analog devices.

blocking operation. An operation that does not

complete until the operation either succeeds or fails. For

example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or to

a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message

to all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI standards

committee for the C language in 1984.

C++. A general-purpose programming language that is

based on the C language. C++ includes extensions that

support an object-oriented programming paradigm.

Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM eServer Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective communication

operations. All tasks in a communicator must participate.

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

© Copyright IBM Corp. 1993, 2006 109

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating on

each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’s data and operation.

distributed shell (dsh). An IBM AIX Parallel System

Support Programs command that lets you issue

commands to a group of hosts in parallel. See IBM

Parallel System Support Programs for AIX: Command

and Technical Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program

that is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the MPMD

model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes

the operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

F

fairness. A policy in which tasks, threads, or

processes must be allowed eventual access to a

resource for which they are competing. For example, if

multiple threads are simultaneously seeking a lock, no

set of circumstances can cause any thread to wait

indefinitely for access to the lock.

Fiber Distributed Data Interface (FDDI). An American

National Standards Institute (ANSI) standard for a local

area network (LAN) using optical fiber cables. An FDDI

LAN can be up to 100 kilometers (62 miles) long, and

can include up to 500 system units. There can be up to

2 kilometers (1.24 miles) between system units and

concentrators.

file system. The collection of files and file

management structures on a physical or logical mass

storage device, such as a diskette or minidisk.

fileset. (1) An individually-installable option or update.

Options provide specific functions. Updates correct an

error in, or enhance, a previously installed program. (2)

One or more separately-installable, logically-grouped

units in an installation package. See also licensed

program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations. Its

name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

110 IBM PE for AIX 5L V4 R3.0: Introduction

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first caller

is also the last to be called. A function that calls itself

recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program is

divided into independent pieces of functionality, which

are distributed to independent processors. This method

is in contrast to data decomposition, which distributes

the same work over different data to independent

processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all

processors for a given variable. It is global in the sense

that it is global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a real-world

scene, often of a desktop. Within that scene are icons,

which represent actual objects, that the user can access

and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network that connects all processor

nodes together.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that provides

an access method to that network. A host provides

end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks,

preventing many other processors from having it,

thereby forcing them to become idle.

I

IBM eServer Cluster 1600. An IBM eServer Cluster

1600 is any CSM-managed cluster comprised of

POWER™ microprocessor based systems (including

RS/6000® SMPs, RS/6000 SP nodes, and pSeries

SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging, profiling,

and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on system

nodes. These files are in a form that allows them to be

installed or removed with the AIX installp command.

See also fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). The IP protocol lies beneath

the UDP protocol, which provides packet delivery

between user processes and the TCP protocol, which

provides reliable message delivery between user

processes.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

Glossary 111

|
|
|

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

K

Kerberos. A publicly available security and

authentication product that works with the IBM AIX

Parallel System Support Programs software to

authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system

that controls the resources of the CPU and allocates

them to the users. The kernel is memory-resident, is

said to run in kernel mode (in other words, at higher

execution priority level than user mode), and is

protected from user tampering by the hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the initiation of a

send by an origin task and the completion of the

matching receive by the target task. More generally,

latency is the time between a task initiating data transfer

and the time that transfer is recognized as complete at

the data destination.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets

a customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset

and package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process

stack traces (listings of function calls that led to the

error) and consume fewer system resources than

traditional corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about the

servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a data

processing system, from which the user can select an

action to be initiated.

message catalog. A file created from a message

source file that contains application error and other

messages, which can later be translated into other

languages without having to recompile the application

source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

Message Passing Interface (MPI). A standardized

API for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit data

to and receive data from other systems and users.

Network Information Services. A set of network

services (for example, a distributed service for retrieving

information about the users, groups, network addresses,

and gateways in a network) that resolve naming and

addressing differences among computers in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) A single

location or workstation in a network. Usually a physical

entity, such as a processor.

112 IBM PE for AIX 5L V4 R3.0: Introduction

 |
 |
 |
 |
 |

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message arrives. By contrast, a blocking

receive will wait. A nonblocking receive must be

completed by a later test or wait.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive code

transformations in order to obtain an executable that

runs faster but gives the same answer as the original.

Such code transformations, however, can make code

debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line

options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

Parallel Operating Environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item in

a menu for which the operator specifies a value or for

which the system provides a value when the menu is

interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure.

(4) A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) A

logical collection of nodes to be viewed as one system

or domain. System partitioning is a method of

organizing the system into groups of nodes for testing

or running different levels of software of product

environments.

Partition Manager. The component of the Parallel

Operating Environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard error

(STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

PE. The Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. Parallel Operating Environment.

pool. Groups of nodes on a system that are known to

LoadLeveler, and are identified by a pool name or

number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive

operation to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

Glossary 113

 |
 |
 |
 |
 |
 |

 |
 |
 |

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and

exit, the process is known to the system by a unique

process identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU time

is used by each function or subroutine in a program.

The histogram or table produced is called the execution

profile.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command that lets you issue

commands on a remote host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. In the context of a message passing

library (such as MPI), there is a need for asynchronous

operations to manage packet flow and data delivery

while the application is doing computation. This

asynchronous activity can be carried out either by a

signal handler or by a service thread. The early IBM

message passing libraries used a signal handler and

the more recent libraries use service threads. The older

libraries are often referred to as the signal handling

versions.

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SPMD. Single program, multiple data.

standard error (STDERR). An output file intended to

be used for error messages for C programs.

standard input (STDIN). The primary source of data

entered into a command. Standard input comes from

the keyboard unless redirection or piping is used, in

which case standard input can be from a file or the

output from another command.

standard output (STDOUT). The primary destination

of data produced by a command. Standard output goes

to the display unless redirection or piping is used, in

which case standard output can go to a file or to

another command.

STDERR. Standard error.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in a

114 IBM PE for AIX 5L V4 R3.0: Introduction

computer program. (3) A group of instructions that can

be part of another routine or can be called by another

program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

T

target application. See DPCL target application.

task. A unit of computation analogous to a process. In

a parallel job, there are two or more concurrent tasks

working together through message passing. Though it is

common to allocate one task per processor, the terms

task and processor are not interchangeable.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

TPD. Third party debugger.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program

that, when reached during execution, cause the

debugger to print information about the state of the

program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of your

program. For example, a trace record is created for

each send and receive operation that occurs in your

program (this is optional and might not be appropriate).

These records are then accumulated into a trace file

that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that can

issue or receive commands and message to or from the

information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch. User Space maximizes

performance by passing up all kernel involvement in

sending or receiving a message.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose value

can be changed, while the program is running, by

referring to the name of the variable.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views of

several executing programs or processes on high

resolution graphics displays.

Glossary 115

116 IBM PE for AIX 5L V4 R3.0: Introduction

Index

Special characters
-coredir command 42

-euilib 10

-hostfile option 9

-ilevel option 9

-infolevel option 9, 11, 38, 97

-labelio option 4, 9

-llfile 10

-pmdlog option 9

-procs option 4, 9

-rmpool 10

-stdoutmode option 5, 9

Numerics
4-point stencil 67

A
abbreviated names x

access, to nodes 2

accessibility 103

keyboard 103

shortcut keys 103

acknowledgements 107

acronyms for product names x

AIX trace file 83

allocation, node
high performance switch 10

host list file 10

attach debugger option 52

attaching the debugger 52

audience of this book ix

B
bad output 58

bad results 59

error messages 58

bad results 59

C
cluster security services 2

common problems 35

bad output 58

cannot compile a parallel program 36

cannot connect with the remote host 37

cannot execute a parallel program 38

cannot start a parallel job 37

core dumps 42

hangs 49

no output 49

user not authorized on remote host 38

compiler scripts 8, 101

for threaded programs 8

compiling 7

C example 7

examples 7

Fortran example 8

scripts 8, 101

conventions x

core dump 42

core dumps
threaded programs 48

core files 42

D
data decomposition 21, 22

dbx 43

debugger, attaching to POE job 52

debugging
threaded programs 59

disability 103

duplication 31

E
efficiency 61

environment variables 10

LANG 35

MP_COREDIR 42

MP_EUIDEVELOP 59

MP_EUILIB 10

MP_HOSTFILE 9, 37

MP_INFOLEVEL 9, 38, 97

MP_LABELIO 6, 9, 59

MP_LLFILE 10

MP_PMDLOG 9

MP_PROCS 6, 9, 37

MP_RESD 37, 39

MP_RMPOOL 10, 37

MP_STDOUTMODE 10, 49

NLSPATH 35

running POE with 6

error messages 58

errors
logging to a file 36

F
functional decomposition 21, 29

H
hangs 58

threaded programs 52

high performance switch 39

and node allocation 10

host list file 3, 10

host list file, examples 3

© Copyright IBM Corp. 1993, 2006 117

I
inetd 38

initialization, how implemented 32

installation 2

Installation Verification Program (IVP) 2, 36

IP protocol 32

J
Jumpshot 85

L
LANG 35

LAPI 32

Laplace equation 67

lightweight core file 46

LoadLeveler 1, 10, 11, 33, 40

and User Space support 40

logging errors to a file 36

LookAt message retrieval tool xii

loops, unrolling 22

example 22

M
message passing 21

definition 21

synchronization 21

message retrieval tool, LookAt xii

messages
and problem determination 35

finding 35

format 36

interpreted 99

level reported 11, 97

PE message catalog components 36

PE message catalog errors 35

types 99

MP_COREDIR 42

MP_EUIDEVELOP 59

MP_EUILIB 10

MP_HOSTFILE 9, 10

MP_INFOLEVEL 9, 38, 97

MP_LABELIO 6, 9, 59

MP_LLFILE 10

MP_PMDLOG 9

MP_PROCS 6, 9

MP_RESD 39

MP_RMPOOL 10

MP_STDOUTMODE 49

MP_STOUTMODE 10

MPI trace files 83

MPI_COMM WORLD 31

MPI_Comm_rank 23

MPI_Comm_size 23

MPI_Finalize 23

MPI_Init 23

MPI_PROD 31

MPI_REDUCE 31

MPI_Scan 31

MPI_SCAN 31

MPI_SUM 31

myhosts file 10

N
NLSPATH 35

node allocation
high performance switch 10

host list file 10

O
options

-euilib 10

-hostfile 9

-ilevel 9

-infolevel 9, 11, 97

-labelio 9

-llfile 10

-pmdlog 9

-procs 9

-rmpool 10

-stdoutmode 9

P
parallel debugger 41

Parallel Operating Environment
-hostfile option 9

-ilevel option 9

-infolevel option 9, 11, 97

-labelio option 9

-pmdlog option 9

-procs option 9

-stdoutmode option 9

communication with nodes 101

compiling programs 101

description 1

exit status 102

how it works 101

internals 101

options 9

running 3

running, examples 4

signal handling 102

starting applications 101

Parallel Operating Environment (POE), description 1

parallel program 21

parallel programs 35

checkpointing 34

communication 62

load balancing 87

profiling 67, 70, 74

restarting 34

safe 93

slow 82

tuning 61

tuning summary 92

wrong answer 78

118 IBM PE for AIX 5L V4 R3.0: Introduction

parallel task 21

parallelizing program 77

Partition Manager Daemon 38

pdbx 44, 52, 78

performance 61

Performance Collection Tool 70

POE
-euilib 10

-hostfile option 9

-ilevel option 9

-infolevel option 9, 11, 97

-labelio option 9

-llfile option 10

-pmdlog option 9

-proc option 9

-rmpool option 10

-stdoutmode option 9

communication with nodes 101

compiling programs 101

description 1

exit status 102

how it works 101

internals 101

options 9

running 3

running, examples 4

signal handling 102

starting applications 101

POE options 9

preface ix

prerequisite knowledge for this book ix

problem diagnosis 36

problems, common
bad output 58

cannot compile a parallel program 36

cannot connect with the remote host 37

cannot execute a parallel program 38

cannot start a parallel job 37

core dumps 42

hangs 49

no output 49

user not authorized on remote host 38

processor node, defined 1

Profile Visualization Tool 74

profiling program 67

protocol
IP 32

User Space (US) 32

R
redundancy 31

return code 49

running POE 3

running 4

with environment variables 6

S
safe coding practices 95

fairness 95

safe coding practices (continued)
order 94

resource limitations 95

safe program, described 93

safety
MPI programs 57

threaded programs 93

sample program, to illustrate messages 97

security, cluster 2

security, supported methods 2

sequential program 21

shared memory protocol 33

shortcut keys
keyboard 103

sine series algorithm 29

SLOG file 82

SLOG2 files 84

starting applications with POE 101

startup problems 38

synchronization 21

T
threaded programs

core dumps 48

debugging 34, 59

hangs 52

performance tuning 66

protocol implications 33

safety 93

trademarks 107

tuning 61

serial algorithm 67

threaded programs 66

U
unrolling loops 22

example 22

user authorization 2

User Space (US) protocol 32

UTE interval files 84

X
Xprofiler 67

Index 119

120 IBM PE for AIX 5L V4 R3.0: Introduction

Reader’s Comments– We’d like to hear from you

IBM Parallel Environment for AIX 5L

Introduction

Version 4 Release 3.0

 Publication No. SA22-7947-05

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7947-05

SA22-7947-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-F83

SA22-7947-05

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How this book is organized
	Overview of contents

	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.3

	Chapter 1. Understanding the environment
	What is IBM Parallel Environment for AIX?
	What is the Parallel Operating Environment?
	Before you start
	Installation
	Access
	User authorization
	Host list file

	Running POE
	Some examples of running POE
	Running POE with environment variables
	Compiling
	POE options
	Managing jobs
	Getting a little more information

	Chapter 2. Message passing
	The message passing model
	Data decomposition
	Functional decomposition
	Duplication versus redundancy
	Protocols supported
	Shared memory message passing
	To thread or not to thread - protocol implications

	Thread debugging implications

	Checkpointing and restarting a parallel program

	Chapter 3. Diagnosing and correcting common problems
	Messages
	Message catalog errors
	Finding PE messages
	Logging POE errors to a file
	Message format
	Diagnosing problems using IVP

	Cannot compile a parallel program
	Cannot start a parallel job
	Cannot execute a parallel program
	The program runs but...
	Using the parallel debugger
	The simplest problem
	The next simplest problem
	OK, the worst problem

	When a core dump is created
	Debugging core dumps

	No output at all
	Should there be output?
	There should be output

	The program hangs
	Hangs and threaded programs

	Attach the debugger
	Fix the problem

	Why did the program hang?
	Other reasons for the program to hang
	Bad output
	Error messages
	Bad results

	Debugging and threads

	Chapter 4. Is the program efficient?
	Tuning the performance of a parallel application
	How much communication is enough?
	Tuning the performance of threaded programs
	Why is this so slow?
	Profile it
	Profile the program using Xprofiler
	Profile the program using the Performance Collection Tool
	Profile the program using the Profile Visualization Tool

	Parallelize it
	Wrong answer!
	Here's the fix!
	It's still not fast enough!
	Step 1 - Determine which SLOG file to generate
	Step 2 - Link program with the library that created MPI trace files
	Step 3 - Gather performance data to AIX trace file
	Step 4 - Convert AIX trace file to UTE interval files
	Step 5 - Convert UTE interval files to SLOG2 files
	Step 6 - Run Jumpshot
	Step 7 - Analyze results, make changes, verify improvements

	Tuning summary

	Chapter 5. Creating a safe program
	What is a safe program?
	Safety and threaded programs
	Using threaded programs with non-threadsafe libraries

	Message ordering
	Program progress when two processes initiate two matching sends and receives
	Communication fairness
	Resource limitations

	Appendix A. A sample program to illustrate messages
	Figuring out what all of this means

	Appendix B. Parallel Environment internals
	What happens when I compile my applications?
	How do my applications start?
	How does POE talk to the nodes?
	How are signals handled?
	What happens when my application ends?

	Appendix C. Accessibility features for PE
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks
	Acknowledgements

	Glossary
	Index
	Reader's Comments– We'd like to hear from you

